Advertisement

Modern Wind Tunnel Techniques for Unsteady Testing – Development of Dynamic Test Rigs

  • A. Bergmann
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 102)

Summary

A survey is given about the capabilities of dynamic wind tunnel testing in Germany. The survey is based on an overview of the historical development including works from the beginning of the 1960s, therewith from the recommencement of the German wind tunnels after World War II. This information has so far been available only in internal reports and in German language. In a second part a review of new developments of dynamic testing capabilities at the German-Dutch Wind Tunnels DNW is presented.

Keywords

Wind Tunnel Dynamic Capability Delta Wing Stewart Platform Wind Tunnel Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Orlik-Rückemann, K.: Methods of Measurement of Aircraft Dynamic Stability Derivatives, National Research Laboratories NRC, Canada, LR-254 (1959)Google Scholar
  2. 2.
    Orlik-Rückemann, K.: Review of Techniques for Determination of Dynamic Stability Parameters in Wind Tunnels., AGARD-LS-114, pp. 3-1–3-28 (1981)Google Scholar
  3. 3.
    Bergmann, A., et al.: Experimental and Numerical Research on the Aerodynamics of Unsteady Moving Aircraft. In: Progress in Aerospace Sciences, vol. 44. Elsevier, Amsterdam (in press, 2008)Google Scholar
  4. 4.
    Loeser, T.: Experimental Research of Dynamic Derivatives of Unsteady Moved Aircraft. In: VKI Lecture Series on Experimental Determination of Dynamic Stability Parameters (2008)Google Scholar
  5. 5.
    Loeser, T., Bergmann, A.: Development of the Dynamic Wind Tunnel Capabilities at DNW-NWB. In: Proceedings of the 41st AIAA Meeting, AIAA 2003-0453, Reno (2003)Google Scholar
  6. 6.
    Hafer, X.: Wind Tunnel Testrig of Dynamic Derivatives in W-Germany. AGARD-CP-235, pp. 5-1–5-22 (1978)Google Scholar
  7. 7.
    Müller, A., Klinke, H.: Ein Beitrag zur Messung der Rolldämpfung im Windkanal, DGLR-Jahrbuch (1962)Google Scholar
  8. 8.
    Thompson, J.S., Fail, R.A.: Oscillatory Derivative Measurements on Sting-Mounted Wind Tunnel Models: Method of Test and Results for Pitch and Yaw on a Cambered Ogee Wing at Mach Numbers up to 2.6., ARC R+M No. 3355, UK (1964)Google Scholar
  9. 9.
    Leedham, H.C.: A Digital Amplitude and Phase Measure System., RAE TR-64070, UK (1964)Google Scholar
  10. 10.
    Thompson, J.S., Fail, R.A.: Oscillatory Derivative Measurements on Sting-Mounted Wind Tunnel Models at R.A.E. Bedford., RAE-TR-66197 (1966)Google Scholar
  11. 11.
    Trienes, H., Thomas, F.: Über die experimentelle Bestimmung instationärer Luftkraftbeiwerte in englischen Forschungsanstalten“, DFL-Bericht Nr. 0117 (1961)Google Scholar
  12. 12.
    Schmidt, E.: Die DFL-Thompsonwaage zur Messung von instationären aerodynamischen Derivativa bei mäßigen Geschwindigkeiten, DFVLR-Bericht Nr. 0552 (1969)Google Scholar
  13. 13.
    von der Decken, J., Schmidt, E., Schulze, B.: On the Test Procedures of the Derivative Balances used in West Germany, AGARD-CP-235, pp. 6-1–6-17 (1978)Google Scholar
  14. 14.
    Schmidt, E., Wagener, J.: Konstruktive Auslegung der Transkanal-Derivativwaage (TRAD), Festschrift zum 60. Geburtstag von Prof. Försching, Inst. f. Aeroelastik, DLR-GÖ, pp. 105–126 (1990)Google Scholar
  15. 15.
    Schmidt, E.: Standard Dynamics Model Experiments with the DFVLR/AVA Transonic Derivative Balance, AGARD-CP-386, pp. 21-1–21-16 (1985)Google Scholar
  16. 16.
    Schmidt, E.: Die AVA Derivativwaage, DLR-Mitt. 74-32, 1974, and ESA TT-197 (1975)Google Scholar
  17. 17.
    Scherer, M., Lozez, J.: Progrès réalisés dans les techniques de réserve des Dérivatives aérodynamiques en soufflerie méthode d’oscillations forces. In: AGARD-CP-17, pp. 409–436 (1966)Google Scholar
  18. 18.
    Schlottmann, F.: Stationäre und instationäre Rollmomentenderivative schlanker Flügel in Rollbewegung. In: ZFW, pp. 331–344 (1974)Google Scholar
  19. 19.
    Schmidt, E., Sauerland, K.-H.: Derivativawaage für den Transkanal Göttingen (TRAD) Teil 1: Beschreibung der Meßeinrichtung, DVFLR IB 232-81J10 (1982)Google Scholar
  20. 20.
    Schmidt, E., Sauerland, K.-H.: Derivativawaage für den Transkanal Göttingen (TRAD) Teil 3: Windkanalmessungen am MBB-Pilotmodell bei Nickschwingung, DFVLR IB 232-82J10 (1982)Google Scholar
  21. 21.
    Niezgodka, F.-J.: Beschreibung eines Systems zur Messung von Nickdämpfungsbeiwerten nach der Methode der freien Oszillationen, DFVLR-Mitt. vom 29.8.1980, Köln (1980)Google Scholar
  22. 22.
    Cooperative Programme on Dynamic Wind Tunnel Experiments for Manoevring Aircraft, AGARD-AR-305, Report of WG 11 (1996)Google Scholar
  23. 23.
    Verification and Validation Data for Computational Unsteady Aerodynamics, RTO TR-26, Report of RTO WG-003, AGARD WG-22 (2000)Google Scholar
  24. 24.
    Greenwell, D.I.: Analysis of a Six-Degree-of-Freedom Dynamic Wind Tunnel Test Rig Mechanism Based on the Stewart Platform, AS / HWA / TR 961 02/1, DERA, Farnborough (1996)Google Scholar
  25. 25.
    Gough, V.E., Whitehall, S.G.: Universal Type Test Machine. In: Proceedings of the FISITA 9th Int. Tech. Congress, pp. 117–137 (1962)Google Scholar
  26. 26.
    Stewart, D.: A Platform with Six Degrees of Freedom. In: Proceedings of the Inst. Mech. Engrs., vol. 180(1.15), pp. 371–385 (1965)Google Scholar
  27. 27.
    Greenwell, D.I., Entwistle, P.M., Richards, D.E.: A Novel Six-Degree-of-Freedom Large-Amplitude Motion Rig Mechanism for Dynamic Wind Tunnel Testing. In: Proceedings of the Conference on Wind Tunnels and Wind Tunnel Techniques, Cambridge, UK, pp. 29.1–29.14 (1997)Google Scholar
  28. 28.
    Farcy, D., Llibre, M., Carton, P., Lambert, C.: SACSO: Wire-Driven Parallel Set-Up for Dynamic Tests in Wind Tunnel – Review of Principles and Advantages for Identification of Aerodynamic Models for Flight Mechanics. In: 8th ONERA-DLR Aerospace Symposium, ODAS, Göttingen (2007)Google Scholar
  29. 29.
    Wiegand, A., Weikert, S.: Vorrichtung zur räumlichen gesteuerten Bewegung eines Körpers in drei bis sechs Freiheitsgraden, Internationale Patentanmeldung WO 97/22436 (1996)Google Scholar
  30. 30.
    Rein, M., Höhler, G., Schütte, A., Bergmann, A., Löser, T.: Ground-Based Simulation of Complex Maneuvers of a Delta-Wing Aircraft. AIAA Journal of Aircraft 45(1), 286–291 (2008)Google Scholar
  31. 31.
    Hübner, A.: Numerical Research of Dynamic Derivatives of Unsteady Moved Aircraft. In: VKI Lecture Series on Experimental Determination of Dynamic Stability Parameters (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • A. Bergmann
    • 1
  1. 1.DNW, Niedergeschwindigkeits-Windkanal BraunschweigBraunschweigGermany

Personalised recommendations