Advertisement

Numerical Simulation – Complementing Theory and Experiment as the Third Pillar in Aerodynamics

  • C. -C. Rossow
  • N. Kroll
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 102)

Summary

Numerical flow simulation has matured to a point where it is widely accepted as analysis and design tool complementary to theoretical considerations and experimental investigations. Methods to solve the Navier-Stokes equations have developed from specialized research techniques to practical engineering tools being used on a routine basis in the industrial design process. Examples for the development path followed in the DLR Institute of Aerodynamics and Flow Technology to mature Computational Fluid Dynamics are presented, and the level reached today is illustrated by examples of flow computations for civil transport aircraft, military aircraft, and helicopter. Finally, the major challenges for future development are outlined and perspectives for the coming years are given.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schlichting, H., Truckenbrodt, E.: Aerodynamik des Flugzeugs, vol. 2, p. 144. Springer, Heidelberg (1969)Google Scholar
  2. 2.
    Thomas, F.: Die Ermittlung der Schüttelgrenzen an Tragflügeln im transsonischen Geschwindigkeitsbereich. Habilitationsschrift TH Braunschweig 1966; WGLR Jb, pp. 126–144 (1966)Google Scholar
  3. 3.
    Raffel, M., Willert, C., Wereley, S., Kompenhans, J.: Particle Imange Velocimetry. In: Experimental Fluid Mechanics, 2nd edn. Springer, Heidelberg (2007)Google Scholar
  4. 4.
    Prandtl, L.: Tragflügeltheorie, I. Mitteilung. Nachrichten der Kgl. Ges. Wiss. Göttingen, Math. -Phys. Klasse, pp. 151–177 (1918)Google Scholar
  5. 5.
    Shannon, R.E.: Systems simulation – the art and science. Prentice Hall, Englewood Cliffs (1975)Google Scholar
  6. 6.
    Jackson, J.A., Bates, R.L.: Glossary of Geology, 3rd edn. American Geological Institute (1987)Google Scholar
  7. 7.
    Euler, L.: Institutiones Calculi Differentialis, vol. I (1755)Google Scholar
  8. 8.
    Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen Differenzengleichungen der mathematischen Physik. Mathematische Annalen 100, 33–74 (1928)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Johnson, N.L.: The Legacy and Future of CFD at Los Alamo. In: Proc. of 1996 Canadian CFD Conference, Ottawa, June 3–4, Los Alamos National Laboratory Report LA-UR-96-1426 (1996)Google Scholar
  10. 10.
    Murman, E.M., Cole, J.: Calculation of Plane, Steady, Transonic Flows Past Profiles. AIAA J. 9, 114–121 (1971)zbMATHCrossRefGoogle Scholar
  11. 11.
    Jameson, A., Caughey, D.A.: Numerical Calculation of the Flow past a Swept Wing, ERDA Research and Development Report COO-3077-140, Courant Institute of Mathematical Sciences, New York University (1977)Google Scholar
  12. 12.
    Jameson, A., Schmidt, W., Turkel, E.: Numerical Solutions of the Euler Equations by Finite Volume Methods using Runge-Kutta Time-Stepping Schemes, AIAA-Paper 81-1259 (1981)Google Scholar
  13. 13.
    Roe, P.L.: Approximate Riemann Solvers, Parameter Vectors and Difference Schemes. J. Comput. Phys. 43, 357–372 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Steger, J., Warming, R.: Flux Vector Splitting of the Inviscid Gas Dynamic Equations with Applications to Finite Difference Methods. J. Comput. Phys. 40, 263–293 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Leer, v.B.: Flux Splitting for the Euler Equations. In: Proc. of 8th Int. Conf. on Num. Meth. in Fluid Dynamics, pp. 507–512. Springer, Heidelberg (1982)Google Scholar
  16. 16.
    Jameson, A.: Solution of the Euler Equations by a Multigrid Method. Appl. Math. And Comp. 13, 327–356 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Kroll, N., Jain, R.K.: Solution of the Two-Dimensional Euler Equations – Experience with a Finite Volume Code, DFVLR-FB 129-87/11 (1987)Google Scholar
  18. 18.
    Rossow, C.-C., Ronzheimer, A.: Investigation of Interference Phenomena of Modern Wing-Mounted High-Bypass-Ratio Engines by the Solution of the Euler Equations, AGARD CP 498 (1992)Google Scholar
  19. 19.
    Rogers, S., Roth, K., Nash, S., Baker, M., Slotnick, J., Whitlock, M.: Advances in Overset CFD Processes Applied to Subsonic High-Lift Aircraft, AIAA-Paper 2000-4217 (2000)Google Scholar
  20. 20.
    Kallinderis, Y., Khawaja, A., McMorris, H.: Hybrid Prismatic/Tetrahedral Grid Generation for Viscous Flows Complex Geometries. AIAA J. 34, 291–298 (1996)zbMATHCrossRefGoogle Scholar
  21. 21.
    Mavriplis, D.J.: Three-Dimensional Multigrid Reynolds-Averaged Navier-Stokes Solver for Unstructured Meshes. AIAA J. 33, 445–453 (1995)zbMATHCrossRefGoogle Scholar
  22. 22.
    Radespiel, R., Rossow, C.-C.: A Cell Vertex Finite Volume Scheme for the Two-Dimensional Navier-Stokes Equations, DFVLR-IB 129-87/40 (1987)Google Scholar
  23. 23.
    Radespiel, R., Rossow, C.-C., Swanson, R.C.: An Efficient Cell-Vertex Multigrid Scheme for the Three-Dimensional Navier-Stokes Equations. AIAA J. 28(8), 1464–1472 (1990)CrossRefGoogle Scholar
  24. 24.
    Kroll, N., Radespiel, R., Rossow, C.-C.: Accurate and Efficient Flow Solvers for 3D Applications on Structured Meshes. AGARD Report R-807, pp. 4.1–4.59 (1995)Google Scholar
  25. 25.
    Gerhold, T., Friedrich, O., Evans, J., Galle, M.: Calculation of Complex Three-Dimensional Configurations Employing the DLR-TAU Code, AIAA-Paper 97-0167 (1997)Google Scholar
  26. 26.
    Brodersen, O.: Drag Prediction of Engine-Airframe Interference Effects Using Unstructured Navier-Stokes Calculations. AIAA J. 39(6), 927–959 (2002)Google Scholar
  27. 27.
    Kroll, N., Fassbender, J.K. (eds.): MEGAFLOW – Numerical Flow Simulation for Aircraft Design. Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), vol. 89. Springer, Heidelberg; Closing Presentation DLR Project MEGAFLOW, Braunschweig, Germany (2002)Google Scholar
  28. 28.
    Rossow, C.-C., Kroll, N., Schwamborn, D.: The MEGAFLOW-Project – Numerical Flow Simulation for Aircraft. In: DiBucchianico, A., Mattheij, R.M.M., Peletier, M.A. (eds.) Progress in Industrial Mathematics at ECMI 2004, pp. 3–33. Springer, New York (2005)Google Scholar
  29. 29.
    Kroll, N., Gauger, N., Brezillon, J., Becker, K., Schulz, V.: Ongoing Activities in Shape Optimization Within The German Project MEGADESIGN. In: Proc. of ECCOMAS 2004, Jyväskylä, Finland, July 24–28 (2004) (on CD)Google Scholar
  30. 30.
    Kroll, N., Becker, K., Rieger, H., Thiele, F.: Ongoing Activities in Shape Optimization with the German Project MEGADESIGN. In: Proc. of Annual Meeting of the International Council of the Aeronautical Sciences, ICAS-2006-3.11.1, Hamburg, Germany (2006)Google Scholar
  31. 31.
    Brodersen, O., Wild, J., Melber-Wilkending, S., Lekemark, L.: DLR-IB 129-2003-34, DLR Braunschweig (2003)Google Scholar
  32. 32.
    Brodersen, O., Wild, J.: DLR-IB 124-2004-18 (2004)Google Scholar
  33. 33.
    Geyr, v.H., Schade, N., Burg, v.d.J.W., Eliasson, P., Esquieu, S.: CFD Prediction of Maximum Lift Effects on Realistic High-Lift-Commercial-Aircraft-Configurations within the European Project EUROLIFT II, AIAA-Paper 2007-4299 (2007)Google Scholar
  34. 34.
  35. 35.
  36. 36.
    Schütte, A., Einarsson, G., Raichle, A., Schöning, B., Orlt, M., Neumann, J., Arnold, J., Mönnich, W., Forkert, T.: Numerical Simulation of Maneuvering Aircraft by Aerodynamics, Flight Mechanics and Structural Mechanics Coupling, AIAA-Paper 2007-1070 (2007)Google Scholar
  37. 37.
    Schwarz, T., Khier, W., Raddatz, J.: Simulation of Unsteady Flow Field around a Complete Helicopter with a Structured RANS Solver. In: Resch, M., Bönisch, T., Benkert, K., Furui, T., Seo, Y., Bez, W. (eds.) High Performance Computing on Vector Systems, pp. 125–137. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  38. 38.
    Khier, W., Dietz, M., Schwarz, T., Wagner, S.: Trimmed CFD Simulation of a Complete Helicopter Configuration. In: 33rd European Rotorcraft Form, Kazan, Russia, September 11–13 (2007)Google Scholar
  39. 39.
    Moore, G.E.: Cramming more Components onto Integrated Circuits. Electronica 34 (1965)Google Scholar
  40. 40.
    Klenner, J., Becker, K., Cross, M., Kroll, N.: Future Simulation Concept., In: CEAS Conference Berlin, Session Numerical Simulation, Paper No. 1 (September 2007)Google Scholar
  41. 41.
    Salas, M.D.: Digital Flight: The Last CFD Aeronautical Grand Challenge. J. Scient. Comp. 28(213) (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • C. -C. Rossow
    • 1
  • N. Kroll
    • 1
  1. 1.DLR, Institut für Aerodynamik und StrömungstechnikBraunschweigGermany

Personalised recommendations