Skip to main content

Fractal Indexing in Multimodal Biometric Contexts

  • Chapter
Book cover Intelligent Computing Based on Chaos

Part of the book series: Studies in Computational Intelligence ((SCI,volume 184))

Summary

Biometric systems aimed at identification and verification range from reliable, slow techniques such as fingerprint matching, to quicker but less reliable techniques such as some face recognition methods. A possible way to improve reliability without losing much on the side of efficiency involves multimodal systems, whose modules process more than one biometric feature. The theory of fractals, having proved itself suitable for effective image indexing methods, can be used for the design of biometric systems too. After introducing the present state of biometrics, fractal based biometric systems are illustrated. A description of unimodal systems is followed by a discussion of multimodal architectures incorporating them. Several issues have to be considered besides the design of the single subsystems: the integration schema, the normalization of results from the single subsystem, the implementation of reliability assessment methods, and the fusion strategy that should be used to integrate the various results into a unified matching score. These issues are discussed in detail, and a fractal based face recognition system is presented: faro. An extension of this system is illustrated, by which faro develops into a multimode system by adding ear recognition. An experimental section tests both unimodal and multimodal faro on several standard databases. The performance is compared to that of other present systems, in order to evaluate the performance enhancement resulting from the multimodal extension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jain, A.K., Ross, A., Prabhakar, S.: An introduction to biometric recognition. IEEE Transactions on Circuits and Systems for Video Technology 14, 4–20 (2004)

    Article  Google Scholar 

  2. Purkyne, J.E.: Commentatio de examine physiologico organi visus et systematis cutanei. Habilit. dissert. f. d. Professur d. Physiol. and k. Universität zu Breslau; also in Op. Omn. 1, 163–194 (1823)

    Google Scholar 

  3. Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Hand book of Fingerprint Recognition. Springer, Heidelberg (2003)

    Google Scholar 

  4. Zhang, J., Yan, Y., Lades, M.: Face recognition: Eigenface, elastic matching, and neural nets. Proceedings of IEEE 85, 1423–1435 (1997)

    Article  Google Scholar 

  5. Craw, I., Cameron, P.: Face recognition by computer. In: Proocedings of British Machine Vision Conference, pp. 489–507 (1996)

    Google Scholar 

  6. Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3, 71–86 (1991)

    Article  Google Scholar 

  7. Lawrence, S., Lee Giles, C., Tsoi, A.C., Back, A.D.: Face recognition: A convolutional neural network approach. IEEE Transactions on Neural Networks 8(1), 98–113 (1997)

    Article  Google Scholar 

  8. Iannarelli, A.: Ear identification. In: Calif (ed.) Forensic Identification Series. Paramont Publishing Fremont (1989)

    Google Scholar 

  9. Burge, M., Burger, W.: Ear biometrics in computer vision. In: International Conference on Pattern Recognition, ICPR 2000, vol. 2, pp. 822–826 (2000)

    Google Scholar 

  10. Hurley, D.J., Nixon, M.S., Carter, J.N.: Force field energy functionals for image feature extraction. Image and Vision Computing Journal 20, 311–317 (2002)

    Article  Google Scholar 

  11. Kirby, M., Sirovich, L.: Application of the karhunen-loeve procedure for the characterization of human faces. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 103–108 (1990)

    Article  Google Scholar 

  12. Sirovich, L., Kirby, M.J.: A low-dimensional procedure for the characterization of human faces. Optical Soc. Am. 4, 519–524 (1987)

    Article  Google Scholar 

  13. Zhao, H., Yuen, P.C.: Incremental linear discriminant analysis for face recognition. IEEE Transaction on Systems, Man and Cybernetics-Part B: Cybernetics 38, 210–221 (2008)

    Article  Google Scholar 

  14. Swets, D.L., Weng, J.J.: Using discriminant eigenfeatures for image retrieval. IEEE Transaction on Pattern Analysis and Machine Intelligence 18, 831–836 (1996)

    Article  Google Scholar 

  15. Zheng, W.-S., Lai, J.-H., Yuen, P.C.: Ga-fisher: A new lda-based face recognition algorithm with selection of principal components. IEEE Transaction on Systems, Man and Cybernetics-Part B: Cybernetics 35, 1065–1078 (2005)

    Article  Google Scholar 

  16. Raudys, S.J., Jain, A.K.: Small sample size effects in statistical pattern recognition: Recommendations for practitioners. IEEE Transaction on Pattern Analysis and Machine Intelligence 13, 252–264 (1991)

    Article  Google Scholar 

  17. Belhumeur, P., Hespanha, N.J., Kriegman, D.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 711–720 (1997)

    Article  Google Scholar 

  18. Chen, W.-S., Yuen, P.C., Huang, J., Dai, D.-Q.: Kernel machine-based one-parameter regularized fisher discriminant method for face recognition. IEEE Transactions on Systems, Man and Cybernetics - Part B: Cybernetics 35, 659–669 (2005)

    Article  Google Scholar 

  19. Chen, L.-F., Mark Liao, H.-Y., Ko, M.-T., Lin, J.-C., Yu, G.-J.: A new lda-based face recognition system which can solve the small sample size problem. Pattern Recognition 33, 1713–1726 (2006)

    Article  Google Scholar 

  20. He, X., Cai, D., Yan, S., Zhang, H.-J.: Neighborhood preserving embedding. In: Proceedings of IEEE International Conference on Computer Vision, ICCV 2005, vol. 2, pp. 1208–1213 (2005)

    Google Scholar 

  21. He, X., Niyogi, P.: Locality preserving projections. In: Proceedings of the 2003 Conference on Advances in Neural Information Processing, pp. 153–160 (2003)

    Google Scholar 

  22. He, X., Cai, D., Yan, S., Hu, Y., Niyogi, P., Zhang, H.-J.: Face recognition using laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 328–340 (2005)

    Article  Google Scholar 

  23. Cai, D., He, X., Han, J., Zhang, H.-J.: Orthogonal laplacianfaces for face recognition. IEEE Transactions on Image Processing 15, 3608–3614 (2006)

    Article  Google Scholar 

  24. Yu, H., Yang, J.: A direct lda algorithm for high-dimensional data with application to face recognition. Pattern Recognition 34, 2067–2070 (2001)

    Article  MATH  Google Scholar 

  25. Barrett, W.A.: A survey of face recognition algorithms and testing results. In: Proceedings of the Conference Record of the Thirty-First Asilomar Conference on Signals, Systems & Computers, vol. 1, pp. 301–305 (1997)

    Google Scholar 

  26. Shang-Hung, L., Sun-Yuan, K., Long-Ji, L.: Face recognition/detection by probabilistic decision-based neural network. IEEE Transactions on Neural Networks 8(1), 114–132 (1997)

    Article  Google Scholar 

  27. Meng, J.E., Shiqian, W., Juwei, L., Hock, L.T.: Face recognition with radial basis function (rbf) neural networks. IEEE Transaction on Neural Networks 13, 697–710 (2002)

    Article  Google Scholar 

  28. Distasi, R., Nappi, M., Tucci, M.: Fire: Fractal indexing with robust extensions for image databases. IEEE Transactions on Image Processing 12, 373–384 (2005)

    Article  Google Scholar 

  29. Fisher, Y.: Fractal Image Compression: Theory and Application. Springer, Heidelberg (1994)

    MATH  Google Scholar 

  30. Kouzani, A.Z., He, F., Sammut, K.: Fractal face representation and recognition. In: Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, vol. 2, pp. 1609–1613 (1997)

    Google Scholar 

  31. Komleh, H.E., Chandran, V., Sridharan, S.: Face recognition using fractal. In: Proceedings of IEEE International Conference on Image Processing (ICIP 2001), vol. 3, pp. 58–61 (2001)

    Google Scholar 

  32. Tan, T., Yan, H.: Face recognition by fractal transformations. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 6, pp. 3537–3540 (1999)

    Google Scholar 

  33. Tan, T., Yan, H.: Face recognition using the weighted fractal neighbor distance. IEEE Transaction on Systems, Man and Cybernetics-Part C: Application and Reviews 35, 576–582 (2005)

    Article  Google Scholar 

  34. Abate, A.F., Distasi, R., Nappi, M., Riccio, D.: Face authentication using speed fractal technique. Image and Vision Computing 24, 977–986 (2006)

    Article  Google Scholar 

  35. Distasi, R., Nappi, M., Riccio, D.: A range/domain approximation error based approach for fractal image compression. IEEE Transaction on Image Processing 15, 89–97 (2006)

    Article  Google Scholar 

  36. Abate, A.F., Nappi, M., Riccio, D., Tucci, M.: Occluded face recognition by means of the ifs. In: Kamel, M.S., Campilho, A.C. (eds.) ICIAR 2005. LNCS, vol. 3656, pp. 938–941. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  37. Phillips, J.P., Moon, H., Rizvi, A.S., Rauss, P.J.: The feret evaluation methodology for face-recognition algorithms. IEEE Transaction on Pattern Analysis and Machine Intelligence 22, 1090–1104 (2000)

    Article  Google Scholar 

  38. Sim, T., Baker, S., Bsat, M.: The cmu pose, illumination, and expression database. IEEE Transaction on Pattern Analysis and Machine Intelligence 25, 1615–1618 (2003)

    Article  Google Scholar 

  39. Martinez, A.M.: Recognizing imprecisely localized, partially occluded, and expression variant faces from a single sample per class. IEEE Transaction on Pattern Analysis and Machine Intelligence 24, 748–763 (2002)

    Article  Google Scholar 

  40. Yale face database. Website (2007), http://cvc.yale.edu/projects/yalefaces/yalefaces.html

  41. Notre dame ear database. Website (2007), http://www.nd.edu/~cvrl/UNDBiometricsDatabase.html

  42. Abate, A.F., Nappi, M., Riccio, D., De Marsico, M.: Face, ear and fingerprint: Designing multibiometric architectures. In: Proceedings of the 14th International Conference on Image Analysis and Processing, ICIAP 2007, pp. 437–442 (2007)

    Google Scholar 

  43. De Marsico, M., Riccio, D.: A new data normalization function for multibiometric contexts: A case study. In: Campilho, A., Kamel, M.S. (eds.) ICIAR 2008. LNCS, vol. 5112, pp. 1033–1040. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  44. Abate, A.F., Nappi, M., Riccio, D., De Marsico, M.: Data normalization and fusion in multibiometric systems. In: Proceedings of The Thirteenth International Conference on Distributed Multimedia Systems, DMS 2007, pp. 87–92 (2007)

    Google Scholar 

  45. Dorizzi, B., Garcia-Salicetti, S., Allano, L.: Multimodality in biosecure: Evaluation on real vs. virtual subjects. In: Proceedings of 2006 IEEE International Conference on Acoustic, Speech, and Signal Processing, ICASSP 2006, vol. 5, pp. 1089–1092 (2006)

    Google Scholar 

  46. Bolle, R.M., Connell, J.H., Pananti, S., Ratha, N.K., Senior, A.W.: The relation between the roc curve and the cmc. In: Proceedings of the Fourth IEEE Workshop on Automatic Identification Advanced Technologies, AUTOID 2005, pp. 15–20 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

De Marsico, M., Distasi, R., Nappi, M., Riccio, D. (2009). Fractal Indexing in Multimodal Biometric Contexts. In: Kocarev, L., Galias, Z., Lian, S. (eds) Intelligent Computing Based on Chaos. Studies in Computational Intelligence, vol 184. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-95972-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-95972-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-95971-7

  • Online ISBN: 978-3-540-95972-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics