Moore, R.: Methods and applications of interval analysis. SIAM, Philadelphia (1979)
MATH
Google Scholar
Alefeld, G., Herzberger, J.: Introduction to interval computations. Academic Press, New York (1983)
MATH
Google Scholar
Lohner, R.: Enclosing the solutions of ordinary initial and boundary value problems. In: Computerarithmetic, Scientific Computation and Programming Languages, pp. 225–286. Teubner, Stuttgart (1987)
Google Scholar
Figueiredo, L., Stolfi, J.: Adaptive enumeration of implicit surfaces with affine arithmetic. Computer Graphic Forum 15, 287–296 (1996)
Google Scholar
Kühn, W.: Rigorously computed orbits of dynamical systems without the wrapping effect. Computing 61(1), 47–67 (1998)
MATH
CrossRef
MathSciNet
Google Scholar
Rall, L.B.: Automatic Differentiation: Techniques and Applications. LNCS, vol. 120. Springer, Heidelberg (1981)
MATH
Google Scholar
Hsu, C.: Global analysis by cell mapping. Int. J. Bifurcation and Chaos 4(2), 727–771 (1992)
CrossRef
Google Scholar
Szymczak, A.: A combinatorial procedure for finding isolating neighborhoods and index pairs. Proc. Royal Society of Edinburgh 127A, 1075–1088 (1997)
Google Scholar
Osipenko, G.: Symbolic analysis of the chain recurrent trajectories of dynamical systems. Differential Equations and Control Processess 4 (1998)
Google Scholar
Dellnitz, M., Hohmann, A.: A subdivision algorithm for the computation of unstable manifolds and global attractors. Numerische Mathematik 75, 293–317 (1997)
MATH
CrossRef
MathSciNet
Google Scholar
Dellnitz, M., Hohmann, A., Junge, O., Rumpf, M.: Exploring invariant sets and invariant measures. Chaos: and Interdisciplinary Journal of Nonlinear Science 7(2), 221–228 (1997)
MATH
CrossRef
MathSciNet
Google Scholar
Galias, Z.: Rigorous investigations of Ikeda map by means of interval arithmetic. Nonlinearity 15, 1759–1779 (2002)
MATH
CrossRef
MathSciNet
Google Scholar
Gibbons, A.: Algorithmic graph theory. Cambridge University Press, Cambridge (1985)
MATH
Google Scholar
Auerbach, D., Cvitanović, P., Eckmann, J., Gunaratne, G., Procaccia, I.: Exploring chaotic motion through periodic orbits. Phys. Rev. Lett. 58(23), 2387–2389 (1987)
CrossRef
MathSciNet
Google Scholar
Cvitanović, P.: Invariant measurement of strange sets in terms of cycles. Phys. Rev. Lett. 61(24), 2729–2732 (1988)
CrossRef
MathSciNet
Google Scholar
Ott, E., Grebogi, C., Yorke, J.: Controlling chaotic dynamical systems. In: Campbell, D. (ed.) Chaos — Soviet-American Perspectives on Nonlinear Science, pp. 153–172. American Institute of Physics, New York (1990)
Google Scholar
Hayes, S., Grebogi, C.: Using chaos for digital communication. In: Carroll, T., Pecora, L. (eds.) Nonlinear Dynamics in Circuits, pp. 325–335. World Scientific, Singapore (1995)
Google Scholar
Lathrop, D., Kostelich, E.: Characterisation of an experimental strange attractor by periodic orbits. Phys. Rev. A 40(7), 4028–4031 (1989)
CrossRef
MathSciNet
Google Scholar
Miranda, C.: Un’osservazione su un teorema di Brouwer. Boll. Un. Mat. Ital. 2(3), 5–7 (1940)
MathSciNet
Google Scholar
Alefeld, G.: Inclusion Methods for Systems of Nonlinear Equations – The Interval Newton Method and Modifications. In: Herzberger, J. (ed.) Topics in Validated Computations, Proceedings of the IMACS-GAMM International Workshop on Validated Computation, pp. 7–26. Elsevier, Amsterdam (1994)
Google Scholar
Neumaier, A.: Interval methods for systems of equations. Cambridge University Press, Cambridge (1990)
MATH
Google Scholar
Kearfott, R., Novoa, M.: Algorithm 681: INTBIS, a portable interval Newton/bisection package. ACM Trans. Math. Software 16(2), 152–157 (1990)
MATH
CrossRef
Google Scholar
Dellnitz, M., Schütze, O., Sertl, S.: Finding zeros by multilevel subdivision techniques. IMA Journal of Numerical Analysis 22(2), 167–185 (2002)
MATH
CrossRef
MathSciNet
Google Scholar
Galias, Z.: Counting low-period cycles for flows. Int. J. Bifurcation and Chaos 16(10), 2873–2886 (2006)
MATH
CrossRef
MathSciNet
Google Scholar
Robinson, C.: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos. CRC Press, USA (1995)
MATH
Google Scholar
Hassard, B., Hastings, S., Troy, W., Zhangk, J.: A computer proof that the Lorenz equations have “chaotic” solutions. Appl. Math. Letters 7, 79–83 (1994)
MATH
CrossRef
Google Scholar
Mischaikow, K., Mrozek, M.: Chaos in the Lorenz equations: a computer assisted proof. Bull. Amer. Math. Soc. 32(1), 66–72 (1995)
MATH
CrossRef
MathSciNet
Google Scholar
Tucker, W.: The Lorenz attractor exists. C. R. Acad. Sci. Paris 328, 1197–1202 (1999)
MATH
Google Scholar
Zgliczyński, P.: Fixed point index for iterations of maps, topological horseshoe and chaos. Topological Methods in Nonlinear Analysis 8(1), 169–177 (1996)
MATH
MathSciNet
Google Scholar
Zgliczyński, P.: Computer assisted proof of chaos in the Rössler equations and the Hénon map. Nonlinearity 10(1), 243–252 (1997)
MATH
CrossRef
MathSciNet
Google Scholar
Easton, R.: Isolating blocks and symbolic dynamics. J. Diff. Eqs. 17, 96–118 (1975)
MATH
CrossRef
MathSciNet
Google Scholar
Galias, Z., Zgliczyński, P.: Abundance of homoclinic and heteroclinic orbits and rigorous bounds for the topological entropy for the Hénon map. Nonlinearity 14, 909–932 (2001)
MATH
CrossRef
MathSciNet
Google Scholar
Galias, Z.: Rigorous numerical studies of the existence of periodic orbits for the Hénon map. J. of Universal Computer Science 4(2), 114–124 (1998),
http://www.jucs.org/jucs_4_2/rigorous_numerical_studies_of
MATH
MathSciNet
Google Scholar
Bowen, R.: Periodic points and measures for axiom A diffeomorphisms. Trans. Amer. Math. Soc. 154, 377–397 (1971)
MATH
CrossRef
MathSciNet
Google Scholar
Newhouse, S., Pignataro, T.: On the estimation of topological entropy. Journal of Statistical Physics 72, 1331–1351 (1993)
MATH
CrossRef
MathSciNet
Google Scholar
Froyland, G., Junge, O., Ochs, G.: Rigorous computation of topological entropy with respect to a finite partition. Physica D 154, 68–84 (2001)
MATH
CrossRef
MathSciNet
Google Scholar
Cornfeld, I., Fomin, S., Sinai, Y.: Ergodic Theory. Springer, Heidelberg (1982)
MATH
Google Scholar
Hénon, M.: A two dimensional map with a strange attractor. Commun. Math. Phys. 50, 69–77 (1976)
MATH
CrossRef
Google Scholar
Grassberger, P., Kantz, H.: Generating partitions for the dissipative Hénon map. Physica 17D, 235–238 (1985)
MathSciNet
Google Scholar
Grassberger, P., Kantz, H., Moenig, U.: On the symbolic dynamics of the Hénon map. J. Phys. A 22, 5217–5230 (1989)
MATH
MathSciNet
Google Scholar
Galias, Z.: Obtaining rigorous bounds for topological entropy for discrete time dynamical systems. In: Proc. Int. Symposium on Nonlinear Theory and its Applications, NOLTA 2002, Xi’an, PRC, pp. 619–622 (2002)
Google Scholar
Newhouse, S., Berz, M., Grote, J., Makino, K.: On the estimation of topological entropy on surfaces. Contemporary Mathematics 469, 243–270 (2008)
Google Scholar
Chua, L., Lin, G.: Canonical realisation of Chua’s circuit family. IEEE Trans. Circ. Syst. CAS–37(7), 885–902 (1990)
CrossRef
MathSciNet
Google Scholar
Parker, T., Chua, L.: Practical numerical algorithms for chaotic systems. Springer, New York (1989)
MATH
Google Scholar
Matsumoto, T., Chua, L., Komuro, M.: The double scroll. IEEE Trans. Circ. Syst. CAS–32(8), 798–817 (1985)
MathSciNet
Google Scholar
Matsumoto, T., Chua, L., Ayaki, K.: Reality of chaos in the double scroll circuit: a computer-assisted proof. IEEE Trans. Circ. Syst. CAS–35(7), 909–925 (1988)
CrossRef
MathSciNet
Google Scholar
Galias, Z.: Positive topological entropy of Chua’s circuit: A computer assisted proof. Int. J. Bifurcation and Chaos 7(2), 331–349 (1997)
MATH
CrossRef
MathSciNet
Google Scholar
Parry, W., Pollicott, M.: An analogue of the prime number theorem for closed orbits of Axiom A flows. Annals Math. 118, 573–591 (1983)
CrossRef
MathSciNet
Google Scholar