Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 776))

  • 3757 Accesses

Abstract

The previous chapter shows how small-angle X-ray Diffraction can be used to study the organization of collagen fibres in tissue, proposing this technique as a diagnosis tool. In this chapter, synchrotron small-angle X-ray diffraction (SAXD) by using high-angle and temporal resolution is presented as an essential tool in structural functional studies of skeletal muscle tissues. SAXD studies of muscle fibres involve the combination of mechanical and diffraction methods and provide insights into the molecular mechanisms responsible for the generation of force and motion in active muscle. These studies are made possible because of the highly ordered arrangement of the contractile proteins, myosin and actin, in the sarcomere, the smallest functional repeating unit of the muscle cell. The possibility to collect diffraction diagrams with high angular and temporal resolutions at modern third-generation synchrotron radiation sources together with new data processing algorithms together and two-dimensional photon counting detectors allow structural and functional studies of live muscle tissues. The review covers the basics of X-ray small-angle diffraction, instrumentation and mathematical methods used in data analysis. A general description of each of these points has been presented in Chap.1 and 2. It provides new results on the axial disposition of the myosin heads and their interpretation from analysing the interference fringes that carve the diffraction orders into clusters of peaks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Huxley H.E.R., Faruqi A.R., Bordas J., Koch M.H.J., Milch J.R. Nature 284, 140 (1980).

    Google Scholar 

  2. Huxley H.E.R., Simmons M., Faruqi A.R., Kress M., Bordas J., Koch M.H. J. Pro. Natl. Acad. Sci. USA 78, 2297 (1981).

    Google Scholar 

  3. Huxley H.E.R., Simmons M., Faruqi A.R., Kress M., Bordas J., Koch M.H.J. J. Mol. Biol. 158, 637 (1982).

    Google Scholar 

  4. Huxley H.E.R., Simmons M., Faruqi A.R., Kress M., Bordas J., Koch M.H.J. J. Mol. Biol. 169, 469 (1983).

    Article  Google Scholar 

  5. Rosenbaum G., Holmes K.C., Witz J. Nature 230, 434 (1971).

    Article  ADS  Google Scholar 

  6. Holmes K.C., Rosenbaum G.J. Synchrotron Rad. 5, 147 (1998).

    Article  Google Scholar 

  7. Squire J. The Structural Basis of Muscle Contraction. Plenum Press, New York and London (1981).

    Google Scholar 

  8. Kabsch W., Mannherz E.G., Suck D., Pai E.F., Holmes K.C. Nature 347, 37 (1990).

    Article  ADS  Google Scholar 

  9. Rayment I., Rypniewski W.R., Schmidt-Báse K., Smith R., Tomchick D.R., Benning M.M., Winklemann D.A., Wesenberg G., Holden H.M. Science 261, 50 (1993).

    Article  ADS  Google Scholar 

  10. Bordas, J., Diakun G.P., Diaz F.G., Harries J.E., Lewis R.A., Lowy J., Mant G.R., Martin-Fernandez M.-L. Towns-Andrews E. J. Mus. Res. Cell Mot. 14, 311 (1993).

    Article  Google Scholar 

  11. Irving M., Lombardi V., Piazzesi G., Ferenczi M.A. Nature 357, 156 (1992).

    Article  ADS  Google Scholar 

  12. Irving M., Allen T.S., Sabido-David C., Craik J.S., Brandmeier B.D., Kendrick-Jones J., Corrie J.E.T., Trentham D.R., Goldman Y.E. Nature 375, 688 (1995).

    Article  ADS  Google Scholar 

  13. Dobbie I., Linari M., Piazzesi G., Reconditi M., Koubassova N., Ferenczi M.A., Lombardi V., Irving M. Nature, 396, 383 (1998).

    Article  ADS  Google Scholar 

  14. Piazzesi G., Reconditi M., Linari M., Lucii L., Sun Y.B., Narayanan T., Boesecke P., Lombardi V., Irving M. Nature 145, 659 (2002).

    Article  ADS  Google Scholar 

  15. Martin-Fernandez M.L., Bordas J., Diakun G., Harries J., Lowy J., Mant G.R., Svensson A. and Towns-Andrews E.J. Mus. Res. Cell Mot. 15, 319 (1994).

    Google Scholar 

  16. Onuki H., Elleaume P. et al., Undulators, Wigglers, and Their Applications, ISBN 0-415-28040-0, 69 (2003).

    Google Scholar 

  17. Walker R.P. Insertion Devices: Undulators and Wigglers, (98-04) CERN Summer School, p:129–185.

    Google Scholar 

  18. X-ray data booklet, Sect. 2, p:2-1–2-16 (2001).

    Google Scholar 

  19. Chubar O., Elleaume P., Accurate and Efficient Computation of Synchrotron Radiation in the Near Field Region, EPAC98 Conference Proceedings Stockholm, 1177(1998).

    Google Scholar 

  20. http://www.cells.es/Beamlines/NCD

  21. Gabriel A. Rev. Sci. Instrum. 48(10), 1303 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  22. Hendrix J., Koch M.H.J., Bordas J. J. Appl. Cryst. 12, 467 (1979).

    Article  Google Scholar 

  23. Worgan J.S., Lewis R., Fore N.S., Sumner I.L., Berry A., Parker B., d’Annunzio F., Martin-Fernandez M.L., Towns-Andrews E., Harries J.E., Mant G.R., Diakun G.P., Bordas J. Nuc. Instrum. Meth. Phys. Res. A291 447(1990).

    Article  ADS  Google Scholar 

  24. Lewis R.A., Berry A., Hall C.J., Helsby W.I., Parker B. Nucl. Instr. Methd. A454, 165 (2000).

    Article  ADS  Google Scholar 

  25. Berry A., Helsby W.I., Parker B.T., Hall C.J., Buksh P.A., Hill A., Clague N., Hillon M., Corbett G., Clifford P., Tidbury A., Lewis R.A., Cernik B.J., Barnes P., Derbyshire G.E. Nucl. Instr. Meth. A513 (1–2), 260 (2003).

    ADS  Google Scholar 

  26. Helsby W.I., Berry A., Buksh P.A., Hall C.J., Lewis R.A. Nucl. Instrum. Meth., A510 (1–2), 138 (2003).

    ADS  Google Scholar 

  27. Huxley A.F., Niedergerke R. Nature 173, 971 (1954).

    Article  ADS  Google Scholar 

  28. Huxley E.H., Hansen J. Nature 173, 973 (1954).

    Article  ADS  Google Scholar 

  29. Knappeis G.G., Carlsen F. J. Cell. Biol. 13, 323 (1962).

    Article  Google Scholar 

  30. Huxley H.E.J. Biophys. Acta 12, 387 (1957).

    Article  Google Scholar 

  31. Egelmann E.H., DeRosier D.J. J. Mol Biol. 166, 623 (1983).

    Article  Google Scholar 

  32. Hanson J., Lowey J. J. Mol. Biol. 6, 46 (1963).

    Article  Google Scholar 

  33. Huxley H.E., Brown W. J. Mol. Biol. 30, 383 (1967).

    Google Scholar 

  34. Milligan R.A., Flicker P.F. J. Cell Biol. 105, 29 (1987).

    Article  Google Scholar 

  35. Hanson J. Proc. Roy. Soc. Lond. (Biol.) 183, 39–58 (1973).

    Article  ADS  Google Scholar 

  36. Lowey S. Subunits in Biological systems- Part A, S.N. Timasheff, G.D. Fasman and M. Dekker (Eds.). New York, 201 (1971).

    Google Scholar 

  37. Knight P., Trinick J.A. J. Mol. Biol. 177, 461 (1984).

    Article  Google Scholar 

  38. Morgan M., Perry S.V., Ottaway J. Biochem. J. 177, 687 (1976).

    Google Scholar 

  39. Kensler R.W., Stewart M. J. Cell Biol. 96, 1797 (1986).

    Article  Google Scholar 

  40. Squire J.M. Nature 233, 457 (1971).

    Article  ADS  Google Scholar 

  41. Squire J.M. J. Mol. Biol. 72, 125 (1972).

    Article  Google Scholar 

  42. Vainshtein B.K. Diffraction of X-Rays by Chain Molecules. Elsevier Publishing Company, London (1966).

    Google Scholar 

  43. Klug AQ., Crick F.C.H., Wyckoff H.W. Acta Cryst 11, 199 (1958).

    Article  Google Scholar 

  44. Juanhuix J., Bordas J., Campmany J., Svensson A., Bassford M.L., Narayanan T. Biophys. J. 80, 1429 (2001).

    Article  Google Scholar 

  45. Juanhuix J. Estructura molecular I funció dels músculs vius, PhD thesis, Autonomous University of Barcelona, Bellaterra, Spain (2001).

    Google Scholar 

  46. Bliss N., Bordas J., Fell B.S., Harris N.W., Helsby W.I., Mant G.R., Towns- Andrew E. Rev. Sci. Inst. 66(2), 1311 (1995).

    Article  ADS  Google Scholar 

  47. Boesecke P., Diat O., Rasmussen B. Rev. Sci. Instrum. 66, 1636 (1995).

    Article  ADS  Google Scholar 

  48. Koch M.H.J., Bendall P. J. Proc. Digital Equipment Computer User Soc. 13 (1981).

    Google Scholar 

  49. Mant G., Bordas J., private communications.

    Google Scholar 

  50. Hammersley A.P., Svensson S.O., Thompson A. Nucl. Instr. Meth. A346, 312 (1994).

    ADS  Google Scholar 

  51. Press W.H., Flannery B.P., Teukolsky S.A., Vetterling W.T. Numerical Recipes in Fortran 77 , 2nd Ed. The Art of Scientific Computing. Cambridge University Press, Cambridge (1992).

    Google Scholar 

  52. Miles C.V. Macromolecular Modelling Of Muscle Structure: A Comparison With X-Ray Diffraction Results, PhD thesis, University of Leciester, Leicester, UK (1997).

    Google Scholar 

  53. Bordas J., Lowy L., Svensson A., Harries J.E., Diakun G.P., Gandy J., Miles C.V., Mant G.R., Towns-Andrews E. Biophys. J. 68, 99S (1995).

    Google Scholar 

  54. Bordas J., Svensson A., Rothery M., Lowy J., Daikun G.P., Boesecke P., Biophys. J. 77, 3197 (1999).

    Article  Google Scholar 

  55. Gordon A.M., Huxley A.F. J. Physiol. 184, 170 (1966).

    Google Scholar 

  56. Linari M., Piazzesi G., Dobbie I., Koubassova N., Reconditi M., Narayanan T., Diat O., Irving M., Lombardi V. Proc. Natl. Acad. Sci. USA 97, 7226 (2000).

    Article  ADS  Google Scholar 

  57. Bordas J., Mant G.R., Diakun G.P., Nave C. J. Cell Biol. 105, 1311 (1987).

    Article  Google Scholar 

  58. Huxley H.E., Reconditi M., Stewart A., Irving T. Biophys. J. 84, 139a (2003).

    Google Scholar 

  59. Reconditi M., Linari M., Lucii L., Stewart A., Sun Y.B., Boesecke P., Narayanan T., Fischetti R.F., Irving T., Piazzesi G., Irving M., Lombardi V. Nature, 428, 578 (2004).

    Article  ADS  Google Scholar 

  60. Bassford M.L. Modelling the molecular structure of muscle with comparison to x-ray diffraction data, PhD thesis, University of Leicester, Leicester, UK (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Svensson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Svensson, A., Bordas, J., de la Cuesta, F. (2009). X-Ray Diffraction from Live Muscle Fibres. In: Gomez, M., Nogales, A., Garcia-Gutierrez, M., Ezquerra, T. (eds) Applications of Synchrotron Light to Scattering and Diffraction in Materials and Life Sciences. Lecture Notes in Physics, vol 776. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-95968-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-95968-7_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-95967-0

  • Online ISBN: 978-3-540-95968-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics