Skip to main content

Historical and Technical Overview of Electromagnetic Fields in Stratified Media

  • Chapter

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

Abstract

The electromagnetic field in stratified media has been intensively investigated for over a century. In this chapter, we conduct a formal review on the electromagnetic field in stratified media. Attention should be paid to early analytical contributions on the electromagnetic field in two half-spaces by Zenneck and Sommerfeld. The subsequent contributions by other pioneers, such as Van der Pol, Baños, Fock, Wait, and King, are outlined. From the new developments on the electromagnetic field of a dipole in the presence of a three-layered region, it is seen that a trapped surface wave can be excited efficiently when both the dipole and the observation point are on or close to the boundary.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Attwood SS (1951) Surface wave propagation over a coated plane conductor, Journal of Applied Physics, 22: 504–509.

    Article  MATH  Google Scholar 

  • Bannister PR and Dube RL (1978) Simple expressions for horizontal electric dipole quasi-static range subsurface-to-subsurface and subsurface-to-air propagation. Radio Science, 13: 501–507.

    Article  Google Scholar 

  • Baños A Jr (1966) Dipole Radiation in the Presence of a Conducting Half-Space. Oxford, UK: Pergamon Press.

    Google Scholar 

  • Barlow HM and Cullen AL (1953) Surface wave. Proceedings of the IEE, 100: 329–341

    Google Scholar 

  • Bremmer H (1949) Terrestrial Radio Waves. New York, NY, USA: Elsevier.

    Google Scholar 

  • Bremmer H (1954) The extension of Sommerfeld’s formula for the propagation of radio waves over a flat earth to different conductivities of the soil. Physica, 20: 441–460.

    Article  MATH  MathSciNet  Google Scholar 

  • Bremmer H (1958) Applications of operational calculus to groundwave propagation, particularly for long waves. IRE Transactions on Antennas and Propagation, AP-6: 267–274.

    Article  Google Scholar 

  • Brown MF, King RWP, and Wu TT (1984) Experiments on the reflection of lateral electromagnetic waves. Journal of Applied Physics, 55: 3927–3933.

    Article  Google Scholar 

  • Chew WC (1990) Waves and Fields in Inhomogeneous Media. New York, NY, USA: Van Nostrand Reinhold.

    Google Scholar 

  • Collin RE (2004a) Some observations about the near zone electric field of a hertzian dipole above a lossy earth. IEEE Transactions on Antennas and Propagation, 52(11): 3133–3137.

    Article  MathSciNet  Google Scholar 

  • Collin RE (2004b) Hertzian dipole radiation over a lossy earth or sea: Some early and late 20th century controversies. IEEE Antennas and Propagation Magazine, 46(2): 64–79.

    Article  MathSciNet  Google Scholar 

  • Dunn JM (1984) Electromagnetic Lateral Waves in Layered Media. Phd Thesis, Cambridge, MA, USA: Harvard University.

    Google Scholar 

  • Dunn JM (1986) Lateral wave propagation in a three-layered medium. Radio Science, 21(5): 787–796.

    Article  Google Scholar 

  • Fei T, Li LW, Yeo TS, Wang HL, and Wu Q (2007) A comparative study of radio wave propagation over the earth due to a vertical electric dipole. IEEE Transactions on Antennas and Propagation, 55(10): 2723–2732.

    Article  Google Scholar 

  • Felsen LB and Marvuvitz N (1973) Radiation and scattering of waves. Englewood Cliffs, USA: Prentice Hall.

    Google Scholar 

  • Fock VA (1965) Electromagnetic Diffraction and Propagation Problems. Oxford, UK: Pergamon Press.

    Google Scholar 

  • Hill DA and Wait JR (1978) Excitation of Zenneck surface wave by a vertical aperture. Radio Science, 13(6): 969–977.

    Article  Google Scholar 

  • Hill DA and Wait JR (1980) Ground wave attenuation function for a spherical earth with arbitrary surface impedance. Radio Science, 15(3): 637–643.

    Article  Google Scholar 

  • Houdzoumis VA (1999) Vertical electric dipole radiation over a sphere: character of the waves that propagate through the sphere. Journal of Applied Physics, 86: 3939–3942.

    Article  Google Scholar 

  • Houdzoumis VA (2000) Two modes of wave propagation manifested in vertical electric dipole radiation over a sphere. Radio Science, 35(1): 19–29.

    Article  Google Scholar 

  • Ishimaru A (1991) Electromagnetic Wave Propagation, Radiation and Scattering, Englewood Cliffs, USA: Prentice Hall.

    Google Scholar 

  • King RJ (1969) EM wave propagation over a constant impedance plane. Radio Science, 4: 225–268.

    Article  Google Scholar 

  • King RWP, Wu TT, and Shen LC (1974) The horizontal wire antenna over a conducting or dielectric half-space: Current and admittance. Radio Science, 9: 701–709.

    Article  Google Scholar 

  • King RWP, Shen LC, and Wu TT (1975) The dipole antenna with dielectric coating in a relatively medium. IEEE Transactions on Antennas and Propagation, AP-23: 57–62.

    Google Scholar 

  • King RWP and Sandler BH (1977) Subsurface communication between dipoles in general media. IEEE Transactions on Antennas and Propagation, AP-25: 770–775.

    Article  Google Scholar 

  • King RWP, deBettencourt JT, and Sandler BH (1979) Lateral-wave propagation of electromagnetic waves in the lithosphere. IEEE Transactions on Geosciences and Electronics, GE-17: 86–92.

    Article  Google Scholar 

  • King RWP, Sandler BH, and Shen LC (1980) A comprehensive study of subsurface propagation from horizontal electric dipoles. IEEE Transactions on Geoscience and Remote Sensing, GE-18: 225–233.

    Article  Google Scholar 

  • King RWP (1982) New formulas for the electromagnetic field of a vertical electric dipole in a dielectric or conducting half-space near its horizontal interface. Journal of Applied Physics, 53: 8476–8482; (1984) Erratum, 56: 3366.

    Article  Google Scholar 

  • King RWP and Wu TT (1983) Lateral waves: Formulas for the magnetic field. Journal of Applied Physics, 54: 507–514; (1984) Erratum, 56: 3365.

    Article  Google Scholar 

  • King RWP (1984) On the reflection of lateral electromagnetic waves form perpendicular boundaries. Journal of Applied Physics, 55: 3916–3926.

    Article  Google Scholar 

  • King RWP and Brown MF (1984) Lateral electromagnetic waves along plane boundaries: A summarizing approach. Proceedings of the IEEE, 72: 595–611.

    Article  Google Scholar 

  • King RWP (1985) Electromagnetic surface waves: New formulas and applications. IEEE Transactions on Antennas and Propagation, AP-33: 1204–1212.

    Article  Google Scholar 

  • King RWP, Owens M, and Wu TT (1986) Properties of lateral electromagnetic fields and their application. Radio Science, 21: 12–23.

    Article  Google Scholar 

  • King RWP (1986) Properties of the lateral electromagnetic field of a vertical dipole and their application. IEEE Transactions on Geoscience and Remote Sensing, GE-24: 813–825.

    Article  Google Scholar 

  • King RWP and Prasad S (1986) Fundamental Electromagnetic Theory and Application. Englewood Cliffs, USA: Prentice-Hall.

    Google Scholar 

  • King RWP (1988a) Lateral electromagnetic pulses generated by a vertical electric dipole on a plane boundary between dielectrics. Journal of Electromagnetic Waves and Applications, 2: 225–243.

    Article  Google Scholar 

  • King RWP (1988b) The Propagation of signals along a three-layered region: Microstrip. IEEE Transactions on Microwave Theory and Techniques, 36: 1080–1086.

    Article  Google Scholar 

  • King RWP (1989a). Lateral electromagnetic waves from a horizontal antenna for remote sensing in the ocean. IEEE Transactions on Antennas and Propagation, 37: 1250–1255.

    Article  Google Scholar 

  • King RWP (1989b) Lateral electromagnetic pulses generated on a plane boundary between dielectrics by vertical and horizontal dipole source with Gaussian pulse excitation. Journal of Electromagnetic Waves and Applications, 2: 589–597.

    Google Scholar 

  • King RWP (1990a) Electromagnetic field of a vertical dipole over a imperfect conducting half-space. Radio Science, 25: 149–160.

    Article  Google Scholar 

  • King RWP (1990b) Lateral electromagnetic waves and pulses on open microstrip. IEEE Transactions on Microwave Theory and Techniques, 38: 38–47.

    Article  Google Scholar 

  • King RWP (1991) The electromagnetic field of a horizontal electric dipole in the presence of a three-layered region. Journal of Applied Physics, 69(12): 7987–7995.

    Article  Google Scholar 

  • King RWP (1992) Electromagnetic field of dipoles and patch antennas on microstrip. Radio Science, 27: 71–78.

    Article  Google Scholar 

  • King RWP, Owens M, and Wu TT (1992) Lateral Electromagnetic Waves: Theory and Applications to Communications, Geophysical Exploration, and Remote Sensing. New York, NY, USA: Springer-Verlag.

    Google Scholar 

  • King RWP (1993) The electromagnetic field of a horizontal electric dipole in the presence of a three-layered region: supplement. Journal of Applied Physics, 74(8): 4845–4548.

    Article  Google Scholar 

  • King RWP and Sandler SS (1994a) The electromagnetic field of a vertical electric dipole in the presence of a three-layered region. Radio Science, 29(1): 97–113.

    Article  Google Scholar 

  • King RWP and Sandler SS (1994b) The electromagnetic field of a vertical electric dipole over the earth or Sea. IEEE Transactions on Antennas and Propagation, 42(3): 382–389.

    Article  Google Scholar 

  • King RWP and Sandler SS (1998) Reply. Radio Science, 33(2): 255–256.

    Article  Google Scholar 

  • King RWP, Fikioris GJ, and Mack RB (2002) Cylindrical Antennas and Array. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Kong JA (2005) Electromagnetic Wave Theory. Cambridge, MA, USA: EMW Publishing.

    Google Scholar 

  • Li K and Park SO (2003) Electromagnetic field in the air generated by a horizontal electric dipole located in the spherical electrically earth coated with a dielectric layer. Journal of Electromagnetic Waves and Applications, 17(10): 1399–1417.

    Article  Google Scholar 

  • Li K, Park SO, and Zhang HQ (2004a) Electromagnetic field in the presence of a three-layered spherical region. Progress In Electromagnetics Research, PIER 45: 103–121. Cambridge, MA, USA: EMW Publishing.

    Google Scholar 

  • Li K, Park SO, and Zhang HQ (2004b) Electromagnetic field over the spherical earth coated with N-layered dielectric. Radio Science, 39, RS2008, doi: 10.1029/2002RS002771.

    Google Scholar 

  • Li K and Lu Y (2005a). Electromagnetic Field from a Horizontal Electric Dipole in the spherical electrically earth Coated with N-layered dielectrics. Progress In Electromagnetics Research, PIER 54: 221–244. Cambridge, MA, USA: EMW Publishing.

    Google Scholar 

  • Li K, and Lu Y (2005b) Electromagnetic field generated by a horizontal electric dipole near the surface of a planar perfect conductor coated with a uniaxial layer. IEEE Transactions on Antennas and Propagation, 53(10): 3191–3200.

    Article  MathSciNet  Google Scholar 

  • Liu L and Li K (2007) Radiation from a vertical electric dipole in the presence of a three-layered region. IEEE Transactions on Antennas and Propagation, 55(12): 3469–3475.

    Article  Google Scholar 

  • Lytle RJ, Miller EK, and Lager DL (1976) A physical explanation of electromagnetic surface wave formulas. Radio Science, 11: 235–243.

    Article  Google Scholar 

  • Mahmoud SF (1999) Remarks on “The electromagnetic field of a vertical electric dipole over the earth or sea”. IEEE Transactions on Antennas and Propagation, 46(12): 1745–1946.

    Article  Google Scholar 

  • Margetis D (2001) Exactly calculable field components of electric dipoles in planar boundary. Journal of Mathematical Physics, 42: 713–745.

    Article  MATH  MathSciNet  Google Scholar 

  • Margetis D (2002) Radiation of horizontal electric dipole on large dielectric sphere. Journal of Mathematical Physics, 43: 3162–3201.

    Article  MATH  MathSciNet  Google Scholar 

  • Mei JP and Li K (2007) Electromagnetic field from a horizontal electric dipole on the surface of a high lossy medium coated with a uniaxial layer. Progress In Electromagnetics Research, PIER 73: 71–91. Cambridge, MA, USA: EMW Publishing.

    Google Scholar 

  • Norton KA (1936) The propagation of radio waves over the surface of the earth and in the upper atmosphere. Proceeding of the IRE, 24: 1367–138.

    Article  Google Scholar 

  • Norton KA (1937) The propagation of radio waves over the surface of the earth and in the upper atmosphere. Proceeding of the IRE 25: 1203–1236.

    Article  Google Scholar 

  • North KA (1941) The calculations of ground-wave field intensity over a finitely conducting spherical earth. Proceedings of the IRE, 29: 623–639.

    Article  Google Scholar 

  • Pan WY (1985) Surface wave propagation along the boundary between sea water and one-dimensionally anisotropic rock. Journal of Applied Physics, 58: 3963–3974.

    Article  Google Scholar 

  • Pan WY (1986) Measurement of lateral waves along a three-layered medium. IEEE Transactions on Antennas and Propagation, AP-34(2): 267–277.

    Article  Google Scholar 

  • Pan WY and Zhang HQ (2003) Electromagnetic field of a vertical electric dipole on the spherical conductor covered with a dielectric layer. Radio Science, 38(3), 1059, doi:10.1029/2002RS002689.

    Article  MathSciNet  Google Scholar 

  • Pan WY (2004) LF VLF ELF Wave Propagation. Chengdu, China: UESTC Press. (In Chinese)

    Google Scholar 

  • Pan WY, Li K, and Zhang HQ (2005) Lateral-wave electromagnetic field generated by a horizontal electric dipole below the spherical-earth surface. Journal of Electromagnetic Waves and Applications, 19(7): 953–972.

    Article  MathSciNet  Google Scholar 

  • Rahmat-Samii Y, Mittra R, and Parhami P (1981) Evaluation of Sommerfeld integrals for lossy half-space problems. Electromagnetics, 1: 1–28.

    Article  Google Scholar 

  • Rolf B (1930) Graphs to Prof. Sommerfeld’s attenuation formula for radio waves. Proceeding of the IRE, 18: 391–402.

    Article  Google Scholar 

  • Sommerfeld A (1909) Propagation of waves in wireless telegraphy. Annalen der Physik, 28: 665–736.

    Article  Google Scholar 

  • Sommerfeld A (1926) Propagation of waves in wireless telegraphy. Annalen der Physik, 81: 1135–1153.

    Article  Google Scholar 

  • Sommerfeld AN (1935) In dia differential und integralgleichungen der meckanik und physik, II: 932–933. Frank P and Mises RV (Eds.), Braunschweig, Germany: F. Vieweg and Son.

    Google Scholar 

  • Spies KP and Wait JR (1966) On the calculation of the groundwave attenuation factor at low frequecies. IEEE Transations on Antennas and Propagation AP-14: 515–517.

    Article  Google Scholar 

  • Van der Pol B and Niessen KF (1930) The propagation of electromagnetic waves over a plane earth. Annalen der Physik, 6: 273–294.

    Google Scholar 

  • Van der Pol B (1935) Theory of the reflection of light from a point source by a finitely conducting flat mirror: with application to Radiotelegraphy. Physics 2: 843–853.

    Google Scholar 

  • Van der Pol B and Bremmer H (1938) The propagation of radio waves over a finitely conducting spherical earth. Philosophical Magazine, 25: 817–834; Further note on above (1939), 27: 261–275.

    MATH  Google Scholar 

  • Vogler LE (1964) A note on the attenuation function for propagation over a flat layered ground. IEEE Transactions on Antennas Propagation, AP-12: 240–242.

    Article  Google Scholar 

  • Wait JR (1953) Propagation of radio waves over a stratified ground. Geophysics, 18: 416–422.

    Article  Google Scholar 

  • Wait JR (1956a) Low frequency radiation from a horizontal earth. Canadian Journal of Physics, 34: 586–595.

    MATH  MathSciNet  Google Scholar 

  • Wait JR (1956b) Radiation from a vertical electric dipole over a curved stratified ground ground. Journal of Research of the National Bureau of Standards, 56: 232–239.

    MathSciNet  Google Scholar 

  • Wait JR (1956c) Radiation and propagation from a vertical antenna over a spherical earth. Journal of Research of National Bureau of Standards, 56: 237–244.

    MATH  MathSciNet  Google Scholar 

  • Wait JR (1957) The transient behavior of the electromagnetic ground wave on a spherical earth. IRE Transactions on Antennas and Propagation, AP-5: 198–202.

    Article  MathSciNet  Google Scholar 

  • Wait JR (1960) On the excitation of electromagnetic surface wave on a curved surface. IRE Transactions on Antennas and Propagation, AP-8: 445–449.

    Article  Google Scholar 

  • Wait JR (1961) The electromagnetic fields of a horizontal dipole in the presence of a conducting half-space. Canadian Journal of Physics, 39: 1017–1027.

    MATH  MathSciNet  Google Scholar 

  • Wait JR (1970) Electromagnetic Waves in Stratified Media (2nd, Ed.). New York, NY, USA: Pergamon Press.

    Google Scholar 

  • Wait JR (1964) Electromagnetic surface waves. In Advanced in Radio Research, 1: 157–217. New York, NY, USA: Academic Press.

    Google Scholar 

  • Wait JR and Hill DA (1979) Excitation of the HF surface wave by vertical and horizontal antennas. Radio Science, 14: 767–780.

    Article  Google Scholar 

  • Wait JR (1998a) The ancient and modern history of EM ground-wave propagation. IEEE Antennas Propagation Magazine, 40(5): 7–24.

    Article  Google Scholar 

  • Wait JR (1998b) Comment on “The electromagnetic field of a vertical electric dipole in the presence of a three-layered region” by Ronold W. P. King and Sheldon S. Sandler. Radio Science, 33(2): 251–253.

    Article  Google Scholar 

  • Watson GN (1918) The diffraction of radio waves by the earth. Proceedings of the Royal Society A95: 83–99.

    Article  Google Scholar 

  • Weyl H (1919) The propagation of plane waves over a plane conductor. Annalen der Physik, 60: 481–500.

    Article  Google Scholar 

  • Wu TT and King RWP (1984) Lateral waves: New formula for E and E 1z . Radio Science, 17: 532–538; (1984) Correction, 19: 1422.

    Article  Google Scholar 

  • Wu TT and King RWP (1987) Lateral Electromagnetic pulses generated by a vertical electric dipole on the boundary between two dielectrics. Journal of Applied Physics, 62: 4543–4355.

    Google Scholar 

  • Zenneck J (1907) Propagation of plane electromagnetic waves along a plane conducting surface and its bearing on the theory of transmission in wireless telegraphy. Annalen der Physik (Leipzig), 23:846–866.

    Article  Google Scholar 

  • Zhang HQ (2001) Trapped surface wave and lateral wave along a planar conductor coated with a dielectric layer. PhD dissertation, Xi’an, China: Chinese Academy of Science. (In Chinese)

    Google Scholar 

  • Zhang HQ, Pan WY, and Shen KX (2001) Electromagnetic field of a horizontal electric dipole over a perfect conductor covered with a dielectric layer. Chinese Journal of Radio Science 16(3): 367–374. (In Chinese)

    Google Scholar 

  • Zhang HQ and Pan WY (2002) Electromagnetic field of a vertical electric dipole on a perfect conductor coated with a dielectric layer. Radio Science, 37(4), 1060, doi:1029/2000RS002348.

    Article  MathSciNet  Google Scholar 

  • Zhang HQ, Li K, and Pan WY (2004). The electromagnetic field of a vertical dipole on the dielectric-coated imperfect conductor. Journal of Electromagnetic Waves and Applications, 18(10): 1305–1320.

    Article  Google Scholar 

  • Zhang HQ, Pan WY, Li K, and Shen KX (2005) Electromagnetic field for a horizontal electric dipole buried inside a dielectric layer coated high Lossy half space. Progress In Electromagnetics Research, PIER 50: 163–186. Cambridge, MA, USA: EMW Publishing.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Zhejiang University Press, Hangzhou and Springer-Verlag GmbH Berlin

About this chapter

Cite this chapter

Li, K. (2009). Historical and Technical Overview of Electromagnetic Fields in Stratified Media. In: Electromagnetic Fields in Stratified Media. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-95964-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-95964-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-95963-2

  • Online ISBN: 978-3-540-95964-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics