Skip to main content

Reverse Vgs Static CMOS (RVGS-SCMOS); A New Technique for Dynamically Compensating the Process Variations in Sub-threshold Designs

  • Conference paper
Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation (PATMOS 2008)

Abstract

In this work we present a new static circuit topology for sub-threshold (sub-VT) digital design. Proposed topology is derived from SCMOS but modifications are done to introduce new adjustable parameters to provide about 4X more control on the delay and active-mode leakage of gates. Proposed gates have full-swing input and output signaling but when the internal NMOS/PMOS transistors are off, they have negative Vgs/Vsg bias, respectively. By controlling the amount of these reverse biases, we can compensate process and temperature variations. Proposed method can be applied to any device or technology node and has 20% area and delay overheads.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vittoz, E.: Weak Inversion for Ultimate Low-Power Logic. In: Piguet, C. (ed.) Low-Power Electronics Design, ch. 16. CRC Press, Boca Raton (2004)

    Google Scholar 

  2. Calhoun, B.H., et al.: Modeling and Sizing for Minimum Energy Operation in Sub-threshold Circuits. In: JSSC, vol. 40(9), pp. 1778–1786 (2005)

    Google Scholar 

  3. Zhai, B., et al.: A 2.60pJ/Inst Subthreshold Sensor Processor for Optimal Energy Efficiency. In: VLSI Ckts. Symp. (2006)

    Google Scholar 

  4. Verma, N., Chandrakasan, A.P.: A 65nm 8T Sub-Vt SRAM Employing Sense-Amplifier Redundancy. ISSCC Dig. Tech. Papers, pp. 328–329 (February 2007)

    Google Scholar 

  5. Kwong, J., et al.: A 65nm Sub-Vt Microcontroller with Integrated SRAM and Switched-Capacitor DC-DC Converter. In: ISSCC, pp. 318–319 (2008)

    Google Scholar 

  6. De, V., et al.: Techniques for Leakage Power Reduction. In: Design of High-Performance Microprocessor Circuits, pp. 46–62. IEEE Press, NJ (2001)

    Google Scholar 

  7. Calhoun, B.H., Chandrakasan, A.P.: Ultra-Dynamic Voltage Scaling (UDVS) Using Sub-Threshold Operation and Local Voltage Dithering. In: JSSC 2006, vol. 41(1), pp. 238–245 (2006)

    Google Scholar 

  8. Zhai, B., et al.: Analysis and Mitigation of Variability in Subthreshold Design. In: ISLPED 2005 (2005)

    Google Scholar 

  9. Ryan, J.F., et al.: Analyzing and Modeling Process Balance for Sub-threshold Circuit Design. In: GLSVLSI 2007 (2007)

    Google Scholar 

  10. Tschanz, J., et al.: Adaptive body bias for reducing impacts of die-to-die and within-die parameter variations on microprocessor frequency and leakage. In: JSSC (November 2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boroujeni, B.K., Piguet, C., Leblebici, Y. (2009). Reverse Vgs Static CMOS (RVGS-SCMOS); A New Technique for Dynamically Compensating the Process Variations in Sub-threshold Designs. In: Svensson, L., Monteiro, J. (eds) Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation. PATMOS 2008. Lecture Notes in Computer Science, vol 5349. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-95948-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-95948-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-95947-2

  • Online ISBN: 978-3-540-95948-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics