Skip to main content

Toward an MP Model of Non-Photochemical Quenching

  • Conference paper
Membrane Computing (WMC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5391))

Included in the following conference series:

Abstract

In this paper we apply the formalism of metabolic P systems for modeling an important phenomenon of photochemical organisms, which determines the plants accommodation to the environmental light. By using some experimental data of this phenomenon, we determine an MP system which discovers, in a specific simplified case, the regulation mechanism underling the non photochemical quenching phenomenon and reproduces, with a good approximation, the observed behavior of the natural system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn, T.K., Avenson, T.J., Ballottari, M., Cheng, Y.C., Niyogi, K.K., Bassi, R., Fleming, G.R.: Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein. Science 320(5877), 794–797 (2008)

    Article  Google Scholar 

  2. Alder, N.N., Theg, S.M.: Energetics of protein transport across biological membranes: a study of the thylakoid ΔpH-dependent/cptat pathway. Cell 112, 231–242 (2003)

    Article  Google Scholar 

  3. Benson, A., Calvin, M.: Carbon dioxide fixation by green plants. Annual Review of Plant Physiology and Plant Molecular Biology 1, 25–42 (1950)

    Article  Google Scholar 

  4. von Bertalanffy, L.: General Systems Theory: Foundations, Developments, Applications. George Braziller Inc., New York (1967)

    Google Scholar 

  5. Bianco, L., Fontana, F., Franco, G., Manca, V.: P systems for biological dynamics. In: [8], pp. 81–126

    Google Scholar 

  6. Bianco, L., Fontana, G., Manca, V.: P systems with reaction maps. Intern. J. Foundations of Computer Sci. 17, 27–48 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Castellini, A., Franco, G., Manca, V.: Toward a representation of Hybrid Functional Petri Nets by MP systems. In: Proc. 2nd International Workshop on Natural Computing, IWNC 2007, Nagoya University, Japan. Springer, Heidelberg (2007)

    Google Scholar 

  8. Ciobanu, G., Păun, G., Pérez-Jiménez, M.J. (eds.): Applications of Membrane Computing. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  9. Evron, Y., McCarty, R.E.: Simultaneous measurement of deltapH and electron transport in chloroplast thylakoids by 9-aminoacridine fluorescence. Plant Physiol. 124, 407–414 (2000)

    Article  Google Scholar 

  10. Fontana, F., Bianco, L., Manca, V.: P systems and the modeling of biochemical oscillations. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 199–208. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Fontana, F., Manca, V.: Discrete solution to differential equations by metabolic P systems. Theoretical Computer Sci. 372, 165–182 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gisselsson, A., Szilagyi, A., Akerlund, H.: Role of histidines in the binding of violaxanthin de-epoxidase to the thylakoid membrane as studied by site-directed mutagenesis. Physiol. Plant. 122, 337–343 (2004)

    Article  Google Scholar 

  13. Holzwarth, A.R.: Applications of ultrafast laser spectroscopy for the study of biological systems. Q. Rev. Biophys. 22, 239–295 (1989)

    Article  Google Scholar 

  14. Kanazawa, A., Kramer, D.M.: In vivo modulation of nonphotochemical exciton quenching (NPQ) by regulation of the chloroplast atp synthase. PNAS 99, 12789–12794 (2002)

    Article  Google Scholar 

  15. Manca, V.: Log-gain principles for metabolic P systems (submitted, 2008)

    Google Scholar 

  16. Manca, V.: Topics and problems in metabolic P systems. In: Proc. Fourth Braintorming Week on Membrane Computing, Fenix Editora, Sevilla (2006)

    Google Scholar 

  17. Manca, V.: Metabolic P systems for biochemical dynamics. Progress in Natural Science 17, 384–391 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Manca, V.: MP systems approaches to biochemical dynamics: Biological rhythms and oscillations. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 86–99. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Manca, V.: Discrete simulations of biochemical dynamics. In: Garzon, M.H., Yan, H. (eds.) DNA 2007. LNCS, vol. 4848, pp. 231–235. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. Manca, V.: The metabolic algorithm for P systems: Principles and applications. Theoretical Computer Sci. 404, 142–157 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Manca, V., Bianco, L.: Biological networks in metabolic P systems. BioSystems 91, 489–498 (2008)

    Article  Google Scholar 

  22. Manca, V., Bianco, L., Fontana, F.: Evolution and oscillation in P systems: Applications to biological phenomena. In: Mauri, G., et al. (eds.) WMC 2004. LNCS, vol. 3365, pp. 63–84. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  23. Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence - a practical guide. Journal of Experimental Botany 51, 659–668 (2000)

    Article  Google Scholar 

  24. Nelson, N., Ben-Shem, A.: The complex architecture of oxygenic photosynthesis. Nature Reviews Molecular Cell Biology 5, 971–982 (2006)

    Article  Google Scholar 

  25. Nelson, N., Yocum, C.: Structure and function of photosystems I and II. The Annual Review of Plant Biology 57, 521–565 (2006)

    Article  Google Scholar 

  26. Păun, G.: Computing with membranes. J. Computer and System Sci. 61, 108–143 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  28. Trubitsin, B.V., Tikhonov, A.N.: Determination of a transmembrane pH difference in chloroplasts with a spin label tempamine. Journal of Magnetic Resonance 163, 257–269 (2003)

    Article  Google Scholar 

  29. Voit, E.O.: Computational Analysis of Biochemical Systems. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  30. Web Pages of polynomial coefficients associated to flux regulation maps of NPQ phenomenon, http://profs.sci.univr.it/~manca/draft/npq-coefficients.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Manca, V., Pagliarini, R., Zorzan, S. (2009). Toward an MP Model of Non-Photochemical Quenching. In: Corne, D.W., Frisco, P., Păun, G., Rozenberg, G., Salomaa, A. (eds) Membrane Computing. WMC 2008. Lecture Notes in Computer Science, vol 5391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-95885-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-95885-7_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-95884-0

  • Online ISBN: 978-3-540-95885-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics