Skip to main content

An Introduction to BioModel Engineering, Illustrated for Signal Transduction Pathways

  • Conference paper
Membrane Computing (WMC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5391))

Included in the following conference series:

Abstract

BioModel Engineering is the science of designing, constructing and analyzing computational models of biological systems. It is inspired by concepts from software engineering and computing science.

This paper illustrates a major theme in BioModel Engineering, namely that identifying a quantitative model of a dynamic system means building the structure, finding an initial state, and parameter fitting. In our approach, the structure is obtained by piecewise construction of models from modular parts, the initial state is obtained by analysis of the structure and parameter fitting comprises determining the rate parameters of the kinetic equations. We illustrate this with an example in the area of intracellular signalling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.K.: Verifying Continuous-Time Markov Chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–276. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  2. Baier, C.: On Algorithmic Verification Methods for Probabilistic Systems. Habilitation thesis, University of Mannheim (1998)

    Google Scholar 

  3. Brightman, F.A., Fell, D.A.: Differential feedback regulation of the mapk cascade underlies the quantitative differences in egf and ngf signalling in pc12 cells. FEBS Lett. 482, 169–174 (2000)

    Article  Google Scholar 

  4. Breitling, R., Gilbert, D., Heiner, M., Orton, R.J.: A structured approach for the engineering of biochemical network models, illustrated for signalling pathways. Briefings in Bioinformatics 9(5), 404–421 (2008)

    Article  Google Scholar 

  5. Chabrier, N., Fages, F.: Symbolic model checking of biochemical networks. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 149–162. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press, Cambridge (1999) (third printing, 2001)

    Google Scholar 

  7. Cho, K.-H., Shin, S.-Y., Kim, H.-W., Wolkenhauer, O., McFerran, B., Kolch, W.: Mathematical modeling of the influence of RKIP on the ERK signaling pathway. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 127–141. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Donaldson, R., Gilbert, D.: A model checking approach to the parameter estimation of biochemical pathways. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 269–287. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Fages, F., Rizk, A.: On the analysis of numerical data time series in temporal logic. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 48–63. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Gilbert, D., Heiner, M.: From petri nets to differential equations - an integrative approach for biochemical network analysis. In: Donatelli, S., Thiagarajan, P.S. (eds.) ICATPN 2006. LNCS, vol. 4024, pp. 181–200. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Gilbert, D., Heiner, M., Lehrack, S.: A unifying framework for modelling and analysing biochemical pathways using petri nets. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 200–216. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Heiner, M., Gilbert, D., Donaldson, R.: Petri nets for systems and synthetic biology. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 215–264. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Hansson, H., Jonsson, B.: A Logic for Reasoning about Time and Reliability. Formal Aspects of Computing 6(5), 512–535 (1994)

    Article  MATH  Google Scholar 

  14. Kolch, W., Calder, M., Gilbert, D.: When kinases meet mathematics: the systems biology of MAPK signalling. FEBS Lett. 579, 1891–1895 (2005)

    Article  Google Scholar 

  15. Levchenko, A., Bruck, J., Sternberg, P.W.: Scaffold proteins may biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties. Proc. Natl. Acad. Sci. USA 97(11), 5818–5823 (2000)

    Article  Google Scholar 

  16. Merz, S.: Model checking: A tutorial overview. In: Cassez, F., Jard, C., Rozoy, B., Dermot, M. (eds.) MOVEP 2000. LNCS, vol. 2067, pp. 3–38. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  17. Matsuno, H., Fujita, S., Doi, A., Nagasaki, M., Miyano, S.: Towards biopathway modeling and simulation. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 3–22. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  18. Murata, T.: Petri nets: Properties, analysis and applications. Proc.of the IEEE 77(4), 541–580 (1989)

    Article  Google Scholar 

  19. Orton, R., Sturm, O.E., Gormand, A., Kolch, W., Gilbert, D.: Computational modelling reveals feedback redundancy within the epidermal growth factor receptor/extracellular-signal regulated kinase signalling pathway. Systems Biology 2, 173–183 (2008)

    Google Scholar 

  20. Pnueli, A.: The Temporal Semantics of Concurrent Programs. Theor. Comput. Sci. 13, 45–60 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  21. Popova-Zeugmann, L., Heiner, M., Koch, I.: Time Petri Nets for Modelling and Analysis of Biochemical Networks. Fundamenta Informaticae 67, 149–162 (2005)

    MathSciNet  MATH  Google Scholar 

  22. Schoeberl, B., Eichler-Jonsson, C., Gilles, E.D., Muller, G.: Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nature Biotechnology 20, 370–375 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gilbert, D., Breitling, R., Heiner, M., Donaldson, R. (2009). An Introduction to BioModel Engineering, Illustrated for Signal Transduction Pathways. In: Corne, D.W., Frisco, P., Păun, G., Rozenberg, G., Salomaa, A. (eds) Membrane Computing. WMC 2008. Lecture Notes in Computer Science, vol 5391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-95885-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-95885-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-95884-0

  • Online ISBN: 978-3-540-95885-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics