Skip to main content

Trade-offs in the Evolution of the Respiratory Apparatus of Chordates

  • Chapter
  • First Online:
Book cover Cardio-Respiratory Control in Vertebrates

Abstract

In the evolution of the respiratory apparatus repeated trade-offs between it and other organ systems are evident. Gills of non-vertebrate chordates have both a respiratory and alimentary function, whereby in amphioxus the gills filter incoming water, extract and transport suspended particles, and ventilate the atrial epithelium, which is the main respiratory surface. In craniates a muscular pump replaces the ciliary ventilator. The branchial pump of gnathostomes encloses the heart, resulting in the biomechanical expedience of coupling branchial and cardiac beat frequency. For aquatic vertebrates an air-filled air breathing organ means a trade-off between buoyancy and respiratory functions. In terrestrial tetrapods, multi-functionality of lungs and of respiratory musculature results in complex trade-offs and synergic combinations. The shift to aspiration breathing has resulted in a mechanical constraint in some lizards, due to the dual locomotor and ventilatory role of the hypaxial musculature. The most highly derived amniotes, mammals and birds, however, evolved along different pathways to high-performance aerobes. Whereas the kinetic bronchoalveolar mammalian lung results in a trade-off between large surface area and work of inflation, the avian system combines a large surface area and thin air–blood barrier of the constant volume lung with ease of inflation of the air sacs, resulting in energy-efficient gas exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beddard F (1895a) On some points of the anatomy of Pipa americana. Proceedings of the Zoological Society of London 53:827–841

    Google Scholar 

  • Beddard F (1895b) On the diaphragm and muscular anatomy of Xenopus. Proceedings of the Zoological Society of London 53:841–846

    Google Scholar 

  • Bock WJ, Wahlert G (1998) Adaptation and the form-function complex In: Allen C, Bekoff M, Lauder GV (eds) Nature's Purposes. Analyses of Function and Design in Biology. MIT, Cambridge, MA, pp 117–168

    Google Scholar 

  • Boggs DF (2002) Interactions between locomotion and ventilation in tetrapods. Comparative Biochemistry and Physiology A 133:269–288

    Google Scholar 

  • Brainerd EL (1999) New perspectives on the evolution of lung ventilation mechanisms in vertebrates. Experimental Biology 4:11–28

    Google Scholar 

  • Brainerd EL, Owerkowicz T (2006) Functional morphology and evolution of aspiration breathing in tetrapods. Respiratory Physiology and Neurobiology 154:73–88

    Article  PubMed  Google Scholar 

  • Brainerd EL, Simons RS (2000) Morphology and function of lateral hypaxial musculature in salamanders. Integrative and Comparative Biology 40:77–86

    Article  Google Scholar 

  • Brainerd EL, Ditelberg JS, Bramble DM (1993) Lung ventilation in salamanders and the evolution of vertebrate air-breathing mechanisms. Biological Journal of the Linnean Society 43:163–183

    Article  Google Scholar 

  • Bramble DM, Jenkins FA (1993) Mammalian locomotor-respiratory integration: implications for diaphragmatic and pulmonary design. Science 262:235–240

    Article  PubMed  CAS  Google Scholar 

  • Brink A (1956) Speculations on some advanced mammalian characteristics in the higher mammalian-like reptiles. Palaeontologia Africana 4:77–96

    Google Scholar 

  • Broman I (1937) Coelom. In: Bolk L, Göppert E, Kallius E, Lubosch W (eds) Handbuch der vergleichenden Anatomie der Wirbeltiere — vol 3. Urban and Schwarzenberg, Berlin, pp 989–1018

    Google Scholar 

  • Brongersma L (1957) Les organes de respiration et l'artère pulmonaire chez les serpents. Comptes Rendus de l'Association des Anatomia 44:205–210

    Google Scholar 

  • Carpenter RE (1986) Flight physiology of intermediate-sized fruit bats (Pteropodidae). Journal of Experimental Biology 120:79–103

    Google Scholar 

  • Carrier DR (1987a) Lung ventilation during walking and running in four species of lizards. Experimental Biology 47:33–42

    CAS  Google Scholar 

  • Carrier DR (1987b) The evolution of locomotor stamina in tetrapods: circumventing a mechanical constraint. Paleobiology 13:326–341

    Google Scholar 

  • Carrier DR (1990) Activity of the hypaxial muscles during walking in the lizard Iguana iguana. Journal of Experimental Biology 152:453–470

    PubMed  CAS  Google Scholar 

  • Carrier DR (1991) Conflict in the hypaxial musculo-skeletal system: documenting an evolutionary constraint. American Zoologist 31:644–654

    Google Scholar 

  • Claessens LPAM (2004a) Dinosaur gastralia: origin, morphology, and function. Journal of Vertebrate Paleontology 24:89–106

    Article  Google Scholar 

  • Claessens LPAM (2004b) Archosaurian respiration and the pelvic girdle aspiration breathing of crocodyliformes. Proceedings of the Royal Society of London B 271:1461–1465

    Article  Google Scholar 

  • Codd JR, Boggs DF, Perry SF, Carrier DR (2005) Activity of three muscles associated with the uncinate processes of the giant Canada goose Branta canadensis maximus. Journal of Experimental Biology 208:849–857

    Article  PubMed  CAS  Google Scholar 

  • Codd JR, Manning PL, Perry SF Norell MA (2008) Avian-like breathing mechanics in maniraptoran dinosaurs. Proceedings of the Royal Society B 275:157–161 (doi:10.1098/rspb.2007.1233)

    Article  PubMed  Google Scholar 

  • Crosfill ML, Widdicombe JG (1961) Physical characteristics of the chest and lungs and the work of breathing in different mammalian species. Journal of Physiology 158:1–14

    PubMed  CAS  Google Scholar 

  • Cuvier G (1812) Recherches sur les ossemens fossiles de quadrupèdes. Paris

    Google Scholar 

  • de Troyer A, Sampson M, Sigrist S (1981) The diaphragm: two muscles. Science 213:237–238

    Article  PubMed  CAS  Google Scholar 

  • Duncker HR (1971) the lung air sac system of birds. Advances in Anatomy Embryology and Cell Biology 45:1–171

    Google Scholar 

  • Duncker HR (1978) Funktionsmorphologie des Atemapparates und Coelomgliederung bei Reptilien, Vögeln und Säugern. Verhandlungen Deutsche Zoologische Gesellschaft 71:99–132

    Google Scholar 

  • Farmer CG, Carrier DR (2000) Pelvic aspiration in the American alligator (Alligator mississippiensis). Journal of Experimental Biology 203:1679–1687

    PubMed  CAS  Google Scholar 

  • Fedde MR, Burger RE, Kitchell RL (1964) Electromyographic studies of the effects of bodily posture and anaesthesia on the activity of respiratory muscles of the domestic cock. Poultry Science 43:839–946

    Google Scholar 

  • Gans C, Clark B (1976) Studies in ventilation of Caiman crocodilus (Crocodylia: Reptilia). Respiration Physiology 26:285–301

    Article  PubMed  CAS  Google Scholar 

  • George J, Shah R (1954) The occurrence of a striated outer muscular sheath in the lungs of Lissemys punctata granosa Schoepff. Journal of Animal Morphology and Physiology 1:13–16

    Google Scholar 

  • Goldschmid A (1996) Chordata, Chordatiere. In: Westheide W, Rieger R (eds) Spezielle Zoologie. Gustav Fischer Stuttgart, pp 835–862

    Google Scholar 

  • Graham JB (1997) Air-breathing fishes. Evolution, diversity, and adaptation. Academic, San Diego

    Google Scholar 

  • Gräper L (1931) Zur vergleichenden Anatomie der Schildkrötenlunge. Gegenbaurs Morphologisches Jahrbuch 68:325–374

    Google Scholar 

  • Greer JJ, Allan DW, Martin-Caraballo M, Lenke RP (1999) An overview of phrenic nerve and diaphragm muscle development in the perinatal rat. Journal of Applied Physiology 86:779–786

    Article  PubMed  CAS  Google Scholar 

  • Hughes GM, Munshi JSD (1973) Nature of the air-breathing organs of the Indian fishes Channa, Amphipnous, Clarias and Saccobranchus as shown by electron microscopy. Journal of Zoology 170:245–270

    Article  Google Scholar 

  • Janvier P (1998) Early vertebrates. Oxford Monographs on Geology and Geophysics 33:1–393

    Google Scholar 

  • Keith A (1905) The nature of the mammalian diaphragm and pleural cavities. Journal of Anatomy and Physiology 39:243–284

    PubMed  CAS  Google Scholar 

  • Klein W, Böhme W, Perry SF (2000) The mesopneumonia and the post-hepatic septum of the Teiioidea (Reptilia: Squamata). Acta Zoologica (Stockholm) 81:109–119

    Article  Google Scholar 

  • Klein W, Andrade DV, Wang T, Taylor EW (2002) Effects of temperature and hypercapnia on ventilation and breathing pattern in the lizard Uromastyx aegyptius microlepis. Comparative Biochemistry and Physiology A 132:847–859

    Article  Google Scholar 

  • Klein W, Andrade DV, Abe AS, Perry SF (2003a) Role of the post-hepatic septum on breathing during locomotion in Tupinambis merianae (Reptilia: Teiidae). Journal of Experimental Biology 206:2135–2143

    Article  Google Scholar 

  • Klein W, Abe AS, Andrade DV, Perry SF (2003b) Structure of the post-hepatic septum and its influence on visceral topology in the tegu lizard, Tupinambis merianae (Teiidae: Reptilia). Journal of Morphology 258:151–157

    Article  Google Scholar 

  • Klein W, Abe AS, Perry SF (2003c) Static lung compliance and body pressures in Tupinambis merianae with and without post-hepatic septum. Respiratory Physiology and Neurobiology 135:73–86

    Article  Google Scholar 

  • Klein W, Reuter C, Böhme W, Perry SF (2005) Lungs and mesopneumonia of scincomorph lizards (Reptilia: Squamata). Organisms Diversity and Evolution 5:47–57

    Article  Google Scholar 

  • Lomholt JP (1993) Breathing in the aestivating African lungfish, Protopterus amphibius. In: Sing BR (ed) Advances in Fish Research, Vol 1. Narendra, Delhi, pp 17–34

    Google Scholar 

  • Lomholt JP, Johansen K, Maloiy GMO (1975) Is the aestivating lungfish the first vertebrate with sectional breathing? Nature 275:787–788

    Article  Google Scholar 

  • Maina J, Maloiy G (1986) The morphology of the respiratory organs of the African air-breathing catfish (Clarias mossambicus): A light, electron and scanning microscopic study, with morphometric observations. Journal of Zoology 209:421–445

    Article  Google Scholar 

  • Mallat J, Paulsen C (1986) Gill ultrastructure of the pacific hagfish Eptatretus stouti. American Journal of Anatomy 177:243–269

    Article  Google Scholar 

  • McMahon B (1969) A functional analysis of aquatic and aerial respiratory movements of an african lungfish, Protopterus aethiopicus, with reference to evolution of the lung-ventilation mechanism in vertebrates. Journal of Experimental Biology 51:407–430

    PubMed  CAS  Google Scholar 

  • Milsom WK, Vitalis T (1984) Pulmonary mechanics and work of breathing in the lizard, Gekko gecko. Journal of Experimental Biology 113:187–202

    Google Scholar 

  • Mitchell GS, Gleeson TT, Bennett AF (1981) Pulmonary oxygen transport during activity in lizards. Respiration Physiology 43:365–375

    Article  PubMed  CAS  Google Scholar 

  • Mortola JP (1987) Dynamics of breathing in newborn mammals. Physiological Reviews 67:187–242

    PubMed  CAS  Google Scholar 

  • Nilsson S, Axelsson M (1987) Cardiovascular control systems in fish. In SOURCE, Manchester University Press, Manchester, pp 115–133

    Google Scholar 

  • Owen R (1868) On the anatomy of vertebrates. III. Mammals. Longman–Green, London, pp 410–420

    Google Scholar 

  • Owerkowicz T, Farmer CG, Hicks JW, Brainerd EL (1999) Contribution of gular pumping to lung ventilation in monitor lizards. Science 284:1661–1663

    Article  PubMed  CAS  Google Scholar 

  • Perry SF (1985) Functional anatomy and evolution of reptilian lungs. In: Duncker HR, Fleischer (eds) Fortschritte der Zoologie – Vertebrate Morphology, vol 30. Gustav Fischer Verlag, Stuttgart, pp 379–382

    Google Scholar 

  • Perry SF (1988) Functional morphology of the lungs of the Nile crocodile, Crocodylus niloticus: non-respiratory parameters. Journal of Experimental Biology 134:99–117

    Google Scholar 

  • Perry SF (1992) Gas-exchange strategies in reptiles and the origin of the avian lung. In: Wood SC, Weber RE, Hargens AR, Millard RW (eds) Physiological Adaptations in Vertebrates. Marcel Dekker, New York

    Google Scholar 

  • Perry SF (1998) Lungs: Comparative anatomy, functional morphology, and evolution. In: Gans C, Gaunt AS (eds) Biology of the Reptilia, vol 19. Society for the Study of Amphibians and Reptilians, Ithaca, New York, pp 1–92

    Google Scholar 

  • Perry SF, Duncker HR (1978) Lung architecture, volume and static mechanics in five species of lizards. Respiration Physiology 34:61–81

    Article  PubMed  CAS  Google Scholar 

  • Perry SF, Duncker HR (1980) Interrelationship of static mechanical factors and anatomical structure in lung evolution. Journal of Comparative Physiology B 138:321–334

    Article  Google Scholar 

  • Perry SF, Schmitz A, Andersen NA, Wallau BR, Nicol S (2000) Descriptive study of the diaphragm and lungs in the short-nosed echidna Tachyglossus aculeatus (Mammlia: Monotremata). Journal of Morphology 243:247–255

    Article  PubMed  CAS  Google Scholar 

  • Pickering M, Jones JFX (2002) The diaphragm: two physiological muscles in one. Journal of Anatomy 201:305–312

    Article  PubMed  Google Scholar 

  • Pickering M, Campion D, Jones JFX (2004) A gastrointestinal role for the amphibian ‘diaphragm’ of Xenopus laevis. Journal of Zoology 264:45–51

    Article  Google Scholar 

  • Romer AS (1956) Osteology of Reptiles. University of Chicago Press, Chicago

    Google Scholar 

  • Rovainen C (1996) Feeding and breathing in lampreys. Brain, Behavior and Evolution 48:297–305

    Article  PubMed  CAS  Google Scholar 

  • Roy PK, Datta Munshi JS (1996) Morphometrics of the respiratory system of air-breathing fishes of India. In: Dutta HM, Datta Munshi JS (eds) Taylor and Francis, London, pp 203–234

    Google Scholar 

  • Scheid P, Piiper J (1970) Analysis of gas exchange in the avian lung: theory and experiments in the domestic fowl. Respiration Physiology 9:246–262.

    Article  PubMed  CAS  Google Scholar 

  • Schmitz A, Gemmel M, Perry SF (2000) Morphometric partitioning of respiratory surfaces in Amphioxus (Branchiostoma lanceolatum Pallas). Journal of Experimental Biology 203:3381–3390

    PubMed  CAS  Google Scholar 

  • Taylor EW, Campbell HA, Levings JJ, Young MJ, Butler PJ, Egginton S (2006) Coupling of the respiratory rhythm in fish with activity in hypobranchial nerves and with heartbeat. Physiological Biochemistry and Zoology 79:1000–1006

    Article  Google Scholar 

  • Thomas SP (1981) Ventilation and oxygen extraction in the bat Pteropus gouldii during rest and steady flight. Journal of Experimental Biology 63:1–9

    Google Scholar 

  • Tickle PG, Ennos AR, Lennox LE, Perry SF, Codd JR (2007) Functional significance of uncinate processes in birds. Journal of experimental biology 210:3955–3961 (doi 210.20/JEB008953)

    Article  PubMed  Google Scholar 

  • von Saalfeld E (1934) Die nervöse Regulierung der Atembewegung bei Uromastix (Lacertilia). Pflügers Archiv 223:449–468

    Article  Google Scholar 

  • Wallach V (1998) The lungs of snakes. In: Gans C, Gaunt AS (eds) Biology of the reptilia, vol 14. Society for the study of amphibians and reptiles, Ithaca, New York, pp 93–295

    Google Scholar 

  • West N, Jones D (1975) Breathing movements in the frog Rana pipiens. II. The power output and efficiency of breathing. Canadian Journal of Zoology 53:345–353

    CAS  Google Scholar 

  • Zimmer K (1935) Beiträge zur Mechanik der Atmung bei den Vögeln in Stand und Flug. Zoologica 88:1–69

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Perry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Perry, S.F., Klein, W., Codd, J.R. (2009). Trade-offs in the Evolution of the Respiratory Apparatus of Chordates. In: Glass, M., Wood, S. (eds) Cardio-Respiratory Control in Vertebrates. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-93985-6_9

Download citation

Publish with us

Policies and ethics