Skip to main content

Aestivation in Amphibians, Reptiles, and Lungfish

  • Chapter
  • First Online:
Cardio-Respiratory Control in Vertebrates

Abstract

Some regions of the world have very limited variations in temperature during the year. Adverse conditions such as lack of appropriate food items and/or the drying out of shallow lakes may induce a state of torpor. This is different from hibernation, which involves a reduction of temperature. Torpor is characterized by a cessation of feeding, and eventually lack of movement. In addition, tissue metabolism and cardiac activity become downregulated, mainly by reduced cardiac frequency. The state of torpor occurs in some amphibians, reptiles and lungfish, and the transition also involves increases in CO2, accompanied by reduced O2 levels. African lungfish have records of surviving in a cocoon with up to 7 years without food intake, but amphibians and reptiles survive in torpor for several months.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe AS (1995) Estivation in South American amphibians and reptiles. Braz J Med Biol Res 28:1241–1247

    PubMed  CAS  Google Scholar 

  • Amin-Naves J, Giusti H, Hoffmann A, Glass ML (2007a) Central ventilatory control in the South American lungfish, Lepidosiren paradoxa: contributions of pH and CO(2). J Comp Physiol B 177(5):529–534

    Article  CAS  Google Scholar 

  • Amin-Naves J, Giusti H, Hoffmann A, Glass ML (2007b) Components to the acid-base related ventilatory drives in the South American lungfish Lepidosiren paradoxa. Respir Physiol Neurobiol 155(1):35–40

    Article  CAS  Google Scholar 

  • Andrade DV, Brito SP, Toledo LF, Abe AS (2004) Seasonal changes in blood oxygen transport and acid-base status in the tegu lizard, Tupinambis merianae. Respir Physiol Neurobiol 140(2):197–208

    Article  PubMed  CAS  Google Scholar 

  • Bassi M, Klein W, Fernandes MN, Perry SF, Glass ML (2005) Pulmonary oxygen diffusing capacity of the South American lungfish Lepidosiren paradoxa: physiological values by the Bohr method. Physiol Biochem Zool 78(4):560–569

    Article  PubMed  CAS  Google Scholar 

  • Bayomy MF, Shalan AG, Bradshaw SD, Withers PC, Stewart T, Thompson G (2002) Water content, body weight and acid mucopolysaccharides, hyaluronidase and beta-glucuronidase in response to aestivation in Australian desert frogs. Comp Biochem Physiol A Mol Integr Physiol 131(4):881–892

    Article  PubMed  CAS  Google Scholar 

  • Boutilier GR, Randall JD, Shelton G, Toews PD (1979) Acid-base relationships in the blood of the toad, Bufo marinus III. The effects of burrowing. J Exp Biol 82:357–365

    PubMed  CAS  Google Scholar 

  • Brinkmann H, Venkatesh B, Brenner S, Meyer A (2004) Nuclear protein-coding genes support lungfish and not the coelacanth as the closest living relatives of land vertebrates. Proc Natl Acad Sci U S A 101(14):4900–4905

    Article  PubMed  CAS  Google Scholar 

  • Carroll RL (1988) Vertebrate paleontology and evolution. Freeman, New York, Oxford

    Google Scholar 

  • Chew SF, Chan NK, Loong AM, Hiong KC, Tam WL, Ip YK (2004) Nitrogen metabolism in the African lungfish (Protopterus dolloi) aestivating in a mucus cocoon on land. J Exp Biol 207(5):777–786

    Article  PubMed  CAS  Google Scholar 

  • da Silva GD, Giusti H, Sanchez AP, Carmo JM, Glass ML (2008) Aestivation in the South American lungfish, Lepidosiren paradoxa: Effects on cardiovascular function, blood gases, osmolality and leptin levels. Respir Physiol Neurobiol 164(3):380–385 [Epub 2008 Sep 5] doi:10.1016/j.resp.2008.08.009

    Article  PubMed  Google Scholar 

  • de Andrade DV, Abe AS (1999) Gas exchange and ventilation during dormancy in the tegu lizard Tupinambis merianae. J Exp Biol 202(24):3677–3685

    PubMed  Google Scholar 

  • Delaney RG, Lahiri S, Fishman AP (1974) Aestivation of the African lungfish Protopterus aethiopicus: cardiovascular and respiratory functions. J Exp Biol 61(1):111–128

    PubMed  CAS  Google Scholar 

  • DeLaney RG, Lahiri S, Hamilton R, Fishman P (1977) Acid-base balance and plasma composition in the aestivating lungfish (Protopterus). Am J Physiol 232(1):R10–R17

    PubMed  CAS  Google Scholar 

  • Fishman AP, Galante RJ, Pack AI (1989) Diving physiology: Lungfish. In: Wood SC (ed) Comparative pulmonary physiology: current concepts. Marcel Dekker, New York, pp 645–676

    Google Scholar 

  • Flanigan JE, Withere PC, Fuery CJ, Guppy M (1993) Metabolic depression and Na+/K+ gradients in the aestivating Australian goldfields, Neobatrachus wilsmorei. J Comp Physiol B 163(7):587–593

    Article  PubMed  CAS  Google Scholar 

  • Fuery CJ, Withers PC, Hobbs AA, Guppy M (1998) The role of protein synthesis during metabolic depression in the Australian desert frog Neobatrachus centralis. Comp Biochem Physiol A Mol Integr Physiol 119(2):469–476

    Article  PubMed  CAS  Google Scholar 

  • Glass ML (2008) The enigma of aestivation in the African lungfish Protopterus dolloi-commentary on the paper by Perry et al. Respir Physiol Neurobiol:160(1):18–20

    Article  CAS  Google Scholar 

  • Glass ML, Fernandes MS, Soncini R, Glass H, Wasser SJ (1997) Effects of dry season dormancy on oxygen uptake, heart rate and blood pressure in the toad, Bufo paracnemis. J Exp Zool 279:330–336

    Article  PubMed  CAS  Google Scholar 

  • Greenwood PH (1986) The natural history of African lungfishes. J Morphol Suppl 1:163–179

    Article  Google Scholar 

  • Harder V, Souza RHS, Severi W, Rantin FT, Bridges CR (1999) The South American lungfish: adaptations to an extreme habitat. In: Val A L, Almeida-Val VMF (Eds.) Biology of Tropical Fishes. INPA, Manaus, pp 99–110

    Google Scholar 

  • Hudson JN, Franklin CE (2002) Effect of aestivation on muscle characteristics and locomotor performance in the green-striped burrowing frog, Cyclorana alboguttata. J Comp Physiol B 172(2):177–182

    Article  PubMed  CAS  Google Scholar 

  • Hudson JN, Lavidis AN, Choy TP, Franklin EC (2005) Effect of prolonged inativity on skeletal motor nerve terminals during aestivation in the burrowing frog, Cyclorana alboguttata. Comp Biochem Physiol A 191:373–379

    Google Scholar 

  • Ip YK, Peh BK, Tam WL, Lee SL, Chew SF (2005) Changes in salinity and ionic compositions can act as environmental signals to induce a reduction in ammonia production in the African lugfish Protopterus. J Exp Zool A Comp Exp Biol 303(6):456–463

    PubMed  Google Scholar 

  • Johansen K, Lenfant C (1967) Respiratory function in the South American lungfish, Lepidosiren paradoxa (Fitz). J Exp Biol 46(2):205–218

    PubMed  CAS  Google Scholar 

  • Johansen K, Reite OB (1967) Effects of acetylcholine and biogenic amines on pulmonary smooth muscle in the African lungfish, Protopterus aethiopicus. Acta Physiol Scand 71(2):248–252

    Article  PubMed  CAS  Google Scholar 

  • Kind PK, Grigg GC, Booth DT (2002) Physiological responses to prolonged aquatic hypoxia in the Queensland lungfish Neoceratodus forsteri. Respir Physiol Neurobiol 132(2):179–190

    Article  PubMed  Google Scholar 

  • Lavidis AN, Hudson JN (2008) Role of calcium and vesicle-docking proteins in remobilising dormant neuromuscular junctions in desert frogs. Comp Biochem Physiol A 194:27–37

    CAS  Google Scholar 

  • Lee J, Alrubaian J, Dores RM (2006) Are lungfish living fossils? Observation on the evolution of the opioid/orphanin gene family. Gen Comp Endocrinol 148:306–314

    Article  PubMed  CAS  Google Scholar 

  • Ligon DB, Peterson CC (2002) Physiological and behavioral variation in estivation among mud turtles (Kinosternon spp.). Physiol Biochem Zool 75(3):283–293

    Article  PubMed  Google Scholar 

  • Lomholt JP (1993) Breathing in the Aestivating African Lungfish, Protopterus amphibius. Adv Fish Res 1:17–34

    Google Scholar 

  • Loong AM, Ang SF, Wong WP, Pörtner HO, Bock C, Wittig R, Bridges CR, ChewSF, IpYK (2008) Effects of hypoxia on the energy status and nitrogen metabolism of African lungfish during aestivation in a mucus cocoon. J Comp Physiol B 178(7):853–865

    Article  PubMed  CAS  Google Scholar 

  • Mesquita-Saad LS, Leitão MA, Paula-Silva MN, Chipari-Gomes AR, Almeida-Val VM(2002) Specialized metabolism and biochemical suppression during aestivation of the extant South American lungfish Lepidosiren paradoxa. Braz J Med Biol Res 62(3):495–501

    CAS  Google Scholar 

  • O'Donnell CP, Schaub CD, Haines AS, Berkowitz DE, Tankersley CG, SchwartzAR, SmithPL (1999) Leptin prevents respiratory depression in obesity. Am J Respir Crit Care Med 159:1477–1484

    PubMed  Google Scholar 

  • O'Donnell CP, TanKersley CG, Polotsky VP, Schwartz AR,SmithPL (2000) Leptin, obesity, and respiratory function. Respir Physiol 119:173–180

    Article  Google Scholar 

  • Perry SF Euverman R, Wang T, Loong AM, Chew SF, Ip YK, Gilmour KM (2008) Control of breathing in African lungfish (Protopterus dolloi): acomparison of aquatic and cocooned (terrestrialized) animals. Respir Physiol Neurobiol 160:8–17

    Article  PubMed  CAS  Google Scholar 

  • Polotsky VY, Smaldone MC, Scharf MT, Li J, Tankersley CG, Smith PL, Schwartz AR, O'DonnellCP (2004) Impact of interrupted leptin pathways on ventilatory control. J Appl Physiol 96:991–998

    Article  PubMed  CAS  Google Scholar 

  • Rose FL (1980) Turtles in arid and semi-arid regions. Bull Ecol Soc Am 61:89

    Google Scholar 

  • Sanchez AP, Hoffmann A, Rantin FT, Glass ML (2001) Relationship between cerebro-spinal fluid pH and pulmonary ventilation of the South American lungfish, Lepidosiren paradoxa (Fitz.). J Exp Zool 290(4):421–425

    Article  PubMed  CAS  Google Scholar 

  • Tohyama Y, Ichimiya T, Kasama-Yoshida H, Cao Y, Hasegawa M, Kojima H, Tamai Y, Kurihara T (2000) Phylogenetic relation of lungfish indicated by the amino acid sequence of myelin DM20. Brain Res Mol Brain Res 80(2):256–259

    Article  PubMed  CAS  Google Scholar 

  • Withers PC, Guppy M (1996) Do Australian desert frogs co-accumulate counteracting solutes with urea during aestivation? J Exp Biol 199(pt 8):1809–1816

    PubMed  CAS  Google Scholar 

  • Zhu M, Yu X (2002) A primitive fish close to the common ancestor of tetrapods and lungfish. Nature 418(6899):767–770

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Glass .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Glass, M.L., Amin-Naves, J., da Silva, G.S.F. (2009). Aestivation in Amphibians, Reptiles, and Lungfish. In: Glass, M., Wood, S. (eds) Cardio-Respiratory Control in Vertebrates. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-93985-6_8

Download citation

Publish with us

Policies and ethics