Skip to main content

The Endocrine–Paracrine Control of the Cardiovascular System

  • Chapter
  • First Online:
Book cover Cardio-Respiratory Control in Vertebrates
  • 1168 Accesses

Abstract

Over the last 50 years, a large number of cardiovascular studies have identified in vertebrates the ability of cardiac nonneuronal cells to synthesize and release catecholamines (CAs) and the natriuretic peptides (NPs). Thanks to compartmentalized cardiac and vascular receptors, these substances, through activation of local autocrine and paracrine circuits, regulate cardiovascular homeostasis in health and disease. In particular, biomedically oriented research has extensively analysed CAs and NPs in mammals, since these substances are regarded with interest in view of their potent diagnostic and therapeutic implications. This knowledge has firmly established the concept of the heart as an endocrine organ. Such a scenario was dramatically enriched by the identification of a growing number of molecules (i.e., angiotensin II, adrenomedullin, ghrelin, neuropeptide Y, etc.) which, produced by the heart, exert endocrine/paracrine/autocrine cardiac actions. More recently, chromogranin-A (CgA) and its derived cardio-suppressive and antiadrenergic peptides (vasostatin-1 and catestatin) have revealed themselves as new players in this framework, functioning as cardiac stabilizers, particularly in the presence of intense excitatory stimuli such as those acting under stress, including CA responses. The intracardiac nitric oxide synthase (NOS)/nitric oxide (NO) system works as a very sensitive autocrine/paracrine spatio-temporal organizer through connection–integration processes, playing a role in network configuration. This chapter comparatively summarizes the information available on the hearts of cold-blooded vertebrates with regard to these major endocrine and paracrine agents, although many serious gaps are particularly evident in amphibians and reptiles due to discontinuous information being available. Some paradigmatic examples will help the reader to grasp, with a historical approach, the ways in which incipient endocrine agents, with their molecular loops, have evolved as important cardiac modulators, and how they have become critical intermediates during evolutionary transitions or in a distinct phylogenetic lineage. At the same time, a better understanding of the old evolutionary roots of these networks, and how they have evolved from relatively less complicated designs, can help to disentangle the experimental complexity which characterizes the endocrine heart at higher organization levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aardal S, Helle KB (1991) Comparative aspects of the endocrine myocardium. Acta Physiologica Scandinavia Supplementum 599:31–46

    CAS  Google Scholar 

  • Aardal S, Helle KB (1992) The vasoinhibitory activity of bovine chromogranin A fragment (vasostatin) and its independence of extracellular calcium in isolated segments of human blood vessels. Regulary Peptides 41(1):9–18

    CAS  Google Scholar 

  • Aardal S, Helle KB, Elsayed S, Reed RK, Serck-Hanssen G (1993) Vasostatins, comprising the N-terminal domain of chromogranin A, suppress tension in isolated human blood vessel segments. Journal of Neuroendocrinology 5:405–412

    PubMed  CAS  Google Scholar 

  • Abrahamsson T (1979) Axonal transport of adrenaline, noradrenaline and phenylethanolamine-N-methyl transferase (PNMT) in sympathetic neurons of the cod, Gadus morhua. Acta Physiologica Scandinavica 105(3):316–325

    PubMed  CAS  Google Scholar 

  • Abrahamsson T, Nilsson S (1976) Phenylethanolamine-N-methyl transferase (PNMT) activity and catecholamine content in chromaffin tissue and sympathetic neurons in the cod, Gadus morhua. Acta physiologica Scandinavica 196(1):94–99

    Google Scholar 

  • Abrahamsson T, Holmgren S, Nilsson S, Pettersson K (1979) On the chromaffin system of the African lungfish, Protopterus aethiopicus. Acta physiologica Scandinavica 107(2):135–139

    PubMed  CAS  Google Scholar 

  • Acierno R, Axelsson M, Tota B, Nilsson S (1991) Hypotensive effect of atrial natriuretic factor (ANF) in the Atlantic cod, Gadus morhua. Comparative Biochemistry and Physiology 99:11–14

    Google Scholar 

  • Aggeli IK, Gaitanaki C, Lazou A, Beis I (2002) Alpha(1)- and beta-adrenoceptor stimulation differentially activate p38-MAPK and atrial natriuretic peptide production in the perfused amphibian heart. Journal of Experimental Biology 205:2387–2397

    PubMed  CAS  Google Scholar 

  • Agnisola C, Randall DJ, Taylor EW (2003) The modulatory effects of noradrenaline on vagal control of heart rate in the dogfish, Squalus acanthias. Physiological Biochemistry and Zoology 76(3):310–320

    CAS  Google Scholar 

  • Ahluwalia A, MacAllister RJ, Hobbs AJ (2004) Vascular actions of natriuretic peptides. Cyclic GMP-dependent and -independent mechanisms. Basic Research in Cardiology 99(2):83–89

    PubMed  CAS  Google Scholar 

  • Alexander RW, Brock TA, Gimbrone Jr MA, Rittenhouse SE (1985) Angiotensin increases inositol trisphosphate and calcium in vascular smooth muscle. Hypertension 7:447–451

    PubMed  CAS  Google Scholar 

  • Allen AM, Zhuo J, Mendelsohn FA (2000) Localization and function of angiotensin AT1 receptors. American Journal of Hypertension: Journal of the American Society of Hypertension 13:S31–S38

    Google Scholar 

  • Aller SG, Lombardo ID, Bhanot S, Forrest JN Jr (1999) Cloning, characterization, and functional expression of a CNP receptor regulating CFTR in the shark rectal gland. American Journal of Physiology 276:C442–C449

    PubMed  CAS  Google Scholar 

  • Amelio D, Garofalo F, Pellegrino D, Giordano F, Tota B, Cerra MC (2006) Cardiac expression and distribution of nitric oxide synthases in the ventricle of the cold-adapted Antarctic teleosts, the hemoglobinless Chionodraco hamatus and the red-blooded Trematomus bernacchii. Nitric Oxide 15(3):190–198

    PubMed  CAS  Google Scholar 

  • Amelio D, Garofalo F, Brunelli E, Loong AM, Wong WP, Ip YK, Tota B, Cerra MC (2008) Differential NOS expression in freshwater and aestivating Protopterus dolloi (lungfish): heart vs kidney readjustments. Nitric Oxide 18(1):1–10

    PubMed  CAS  Google Scholar 

  • Anderson WG, Cerra MC, Wells A, Tierney ML, Tota B, Takei Y, Hazon N (2001) Angiotensin and angiotensin receptors in cartilaginous fishes. Comparative Biochemistry and Physiology A 128:31–40

    CAS  Google Scholar 

  • Angelone T, Filice E, Quintieri AM, Imbrogno S, Recchia A, Pulerà E, Mannarino C, Pellegrino D, Cerra MC (2008) beta (3)-Adrenoceptors modulate left ventricular relaxation in the rat heart via the NO-cGMP-PKG pathway. Acta Physiologica 193:229–39

    PubMed  CAS  Google Scholar 

  • Aota S (1995) Cardiovascular effects of adrenomedullin in teleost fish. Brazilian Journal of Medical and Biological Research 28(11–12):1223–1226

    PubMed  CAS  Google Scholar 

  • Ask JA (1983) Comparative aspects of adrenergic receptors in the hearts of lower vertebrates. Comparative Biochemistry and Physiology A 76(3):543–552

    CAS  Google Scholar 

  • Axelsson M (1988) The importance of nervous and humoral mechanisms in the control of cardiac performance in the Atlantic cod Gadus morhua at rest and during non-exhaustive exercise. Journal of Experimental Biology 137:287–301

    PubMed  CAS  Google Scholar 

  • Axelsson M (1995) The coronary circulation: a fish perspective. Brazilian Journal of Medical and Biological Research 28(11–12):1167–1177

    PubMed  CAS  Google Scholar 

  • Axelsson M, Ehrenström F, Nilsson S (1987) Cholinergic and adrenergic influence on the teleost heart in vivo. Experimental Biology 46(4):179–186

    PubMed  CAS  Google Scholar 

  • Baker KM, Aceto JA (1989) Characterization of avian angiotensin II cardiac receptors: coupling to mechanical activity and phosphoinositide metabolism. Journal of Molecular and Cellular Cardiology 21(4):375–382

    PubMed  CAS  Google Scholar 

  • Baker KM, Singer HA, Aceto JF (1989) Angiotensin II receptor-mediated stimulation of cytosolic-free calcium and inositol phosphates in chick myocytes. The Journal of Pharmacology and Experimental Therapeutics 251:578–585

    PubMed  CAS  Google Scholar 

  • Banks P, Helle KB (1965) The release of protein from the stimulated adrenal medulla. The Biochemical Journal 97:40C–41C

    PubMed  CAS  Google Scholar 

  • Barkatullah SC, Curry WJ, Johnston CF, Hutton JC, Buchanan KD (1997) Ontogenetic expression of chromogranin A and its derived peptides, WE-14 and pancreastatin, in the rat neuroendocrine system. Histochemistry and Cell Biology 107(3):251–257

    PubMed  CAS  Google Scholar 

  • Beaulieu P, Lambert C (1998) Peptidic regulation of heart rate and interactions with the autonomic nervous system. Cardiovascular Research 37:578–585

    PubMed  CAS  Google Scholar 

  • Berger PJ, Gibbins IL, Hards DK, Crosby LJ (1982) The distribution and ultrastructure of sensory elements in the baroreceptor region of the truncus arteriosus of the lizard Trachydosaurus rugosus. Cell and Tissue Research 226(2):389–406

    PubMed  CAS  Google Scholar 

  • Bergsma DJ, Ellis C, Nuthulaganti PR (1993) Isolation and expression of a novel angiotensin II receptor from Xenopus laevis heart. Molecular Pharmacology 44:277–284

    PubMed  CAS  Google Scholar 

  • Berk BC, Corson MA (1997) Angiotensin II signal transduction in vascular smooth muscle: role of tyrosine kinases. Circulatory Research 80:607–616

    CAS  Google Scholar 

  • Bernier NJ, Perry SF (1999) Cardiovascular effects of angiotensin-II-mediated adrenaline release in rainbow trout Oncorhynchus mykiss. Journal of Experimental Biology 202(Pt1):55–66

    PubMed  CAS  Google Scholar 

  • Bernier NJ, Kaiya H, Takei Y, Perry SF (1999) Mediation of humoral catecholamine secretion by the renin–angiotensin system in hypotensive rainbow trout (Oncorhynchus mykiss). Journal of Endocrinology 160(3):351–363

    PubMed  CAS  Google Scholar 

  • Billington T, Pharmawati M, Gehring CA (1997) Isolation and immunoaffinity purification of biologically active plant natriuretic peptide. Biochemical and Biophysical Research Communications 235(3):722–725

    PubMed  CAS  Google Scholar 

  • Bjenning C, Takei Y, Watanabe TX, Nakajima K, Sakakibara S, Hazon N (1992) A C type natriuretic peptide is a vasodilator in vivo and in vitro in the common dogfish. Journal of Endocrinology 133(2):R1–4

    PubMed  CAS  Google Scholar 

  • Blaschko H, Comline RS, Schneider FH, Silver M, Smith AD (1967) Secretion of a chromaffin granule protein, chromogranin, from the adrenal gland after splanchnic stimulation. Nature 215(5096):58–59

    PubMed  CAS  Google Scholar 

  • Bompiani GD, Farulla A, Perali L, Naro G (1959) On the presence of particular cytoplasmatic osmiophilic bodies in cells of the myocardium of the left auricle of man. Atti della Società italiana di cardiologia 21(2):519–522

    Google Scholar 

  • Bramich NJ, Cousins HM, Edwards FR, Hirst GD (2001) Parallel metabotropic pathways in the heart of the toad, Bufo marinus. American Journal of Physiology. Heart and Circulatory Physiology 281(4):H1771–H1777

    PubMed  CAS  Google Scholar 

  • Breno MC, Picarelli ZP (1992) The vasopressor action of angiotensin in the snake Bothrops jararaca. Comparative Biochemistry and Physiology A Comparative Physiology 101(4):819–825

    CAS  Google Scholar 

  • Breno MC, Porto CS, Picarelli ZP (2001) Angiotensin receptor in the heart of Bothrops jararaca snake. European Journal of Clinical Pharmacology 417:27–35

    CAS  Google Scholar 

  • Brownlee DJ, Fairweather I, Johnston CF, Smart D, Shaw C, Halton DW (1993) Immunocytochemical demonstration of neuropeptides in the central nervous system of the roundworm, Ascaris suum (Nematoda: Ascaroidea). Parasitology 106(Pt3):305–316

    PubMed  CAS  Google Scholar 

  • Brutsaert DL (2003) Cardiac endothelial–myocardial signaling: its role in cardiac growth, contractile performance and rythmicity. Physiological Reviews 83:59–115

    PubMed  CAS  Google Scholar 

  • Burggren W (1985) Hemodynamics and Regulation of Central Cardiovascular Shunts in Reptiles. In: Johansen K, Burggren W (eds) Cardiovascular Shunts. Hylogenetic, Ontogenetic and Clinical Aspects. Raven, New York

    Google Scholar 

  • Burggren W (1987) Form and function in reptilian circulations. American Zoologist 27:5–19

    Google Scholar 

  • Burggren W, Farrell A, Lillywhite H (1997) Vertebrate Cardiovascular Systems. In: Danzler WH (ed) Handbook of Physiology. Section 13: Comparative Physiology. Vol 1. Oxford University Press, New York, pp 215–308

    Google Scholar 

  • Burnstock G (1969) Evolution of the autonomic innervation of visceral and cardiovascular systems in vertebrates. Pharmacological Reviews 21(4):247–324

    PubMed  CAS  Google Scholar 

  • Butler PJ, Metcalfe JD, Ginley SA (1986) Plasma catecholamines in the lesser spotted dogfish and rainbow trout at rest and during different levels of exercise. Journal of Experimental Biology 123:409–421

    PubMed  CAS  Google Scholar 

  • Cantin M, Timm-Kennedy M, El-Khatib E, Huet M, Yunge L (1979) Ultrastructural cytochemistry of atrial muscle cells. VI. Comparative study of specific granules in right and left atrium of various animal species. The Anatomical Record 193(1):55–69

    PubMed  CAS  Google Scholar 

  • Cappello S, Angelone T, Tota B, Pagliaro P, Penna C, Rastaldo R, Corti A, Losano G, Cerra MC (2007) Human recombinant chromogranin A-derived vasostatin-1 mimics preconditioning via an adenosine/nitric oxide signaling mechanism. The Anatomical Record 293(1):H719–H727

    CAS  Google Scholar 

  • Capra MF, Satchel GH (1977) Adrenergic and cholinergic responses of the isolated saline-perfused heart of the elasmobranch fish, Squalus acanthias. General Pharmacology 8(1):59–65

    PubMed  CAS  Google Scholar 

  • Carlsten A, Ericson LE, Poupa O, Winell S (1983a) Heart lesions in the frog at high environmental temperature. Comparative Biochemistry and Physiology A 76(3):583–591

    CAS  Google Scholar 

  • Carlsten A, Poupa O, Volkmann R (1983b) Cardiac lesions in poikilotherms by catecholamines. Comparative biochemistry and physiology A76(3):567–581

    Google Scholar 

  • Carroll RG, Opdyke DF (1982) Evolution of angiotensin II-induced catecholamine release. American Journal of Physiology 243:R54–R69

    Google Scholar 

  • Cavallero S, González GE, Puyó AM, Rosón MI, Pérez S, Morales C, Hertig CM, Gelpi RJ, Fernández BE (2007) Atrial natriuretic peptide behaviour and myocyte hypertrophic profile in combined pressure- and volume-induced cardiac hypertrophy. American Journal of Hypertension: Journal of the American Society of Hypertension 25(9):1940–1950

    CAS  Google Scholar 

  • Ceconi C, Ferrari R, Bachetti T, Opasich C, Volterrani M, Colombo B, Parrinello G, Corti A (2002) Chromogranin A in heart failure; a novel neurohumoral factor and a predictor for mortality. European Heart Journal 23:967–974

    PubMed  CAS  Google Scholar 

  • Cerra MC, Pellegrino D (2007) Cardiovascular cGMP-generating systems in physiological and pathological conditions. Current Medicinal Chemistry 14(5):585–599

    PubMed  CAS  Google Scholar 

  • Cerra MC, Canonaco M, Tota B (1993) ANF binding sites in the heart of the quail (Coturnix coturnix japonica). Peptides 14(5):913–918

    PubMed  CAS  Google Scholar 

  • Cerra MC, Canonaco M, Facciolo RM, Tota B (1995) The evaluation of CNP binding sites in the heart of a teleost and an elasmobranch fish. Proceedings of the 4th International Congress of Comparative Physiology and Biochemistry Physiological Zoology 68(4):181

    Google Scholar 

  • Cerra MC, Canonaco M, Takei Y, Tota B (1996) Characterization of natriuretic peptide binding sites in the heart of the eel Anguilla anguilla. Journal of Experimental Zoology 275:27–35

    CAS  Google Scholar 

  • Cerra MC, Tierney ML, Takei Y, Hazon N, Tota B (2001) Angiotensin II binding sites in the heart of Scyliorhinus canicula: an autoradiographic study. General and Comparative Endocrinology 121(2):126–134

    PubMed  CAS  Google Scholar 

  • Cerra MC, Gattuso A, Tota B (2003a) Cardiac role of frog ANF: negative inotropism and binding sites in Rana esculenta. General and Comparative Endocrinology 114(2–3):91–99

    CAS  Google Scholar 

  • Cerra MC, Amelio D, Tavolaro P, Palma A, Marcianò V, Farina F (2003b) Pericardium of the frog, Rana esculenta, is morphologically designed as a lymphatic space. Journal of Morphology 257(1):72–77

    PubMed  Google Scholar 

  • Cerra MC, De Iuri L, Angelone T, Corti A, Tota B (2006) Recombinant N-terminal fragments of chromogranin-A modulate cardiac function of the Langendorff-perfused rat heart. Basic Research in Cardiology 101(1):43–52

    PubMed  CAS  Google Scholar 

  • Chen R, Li W, Lin H (2005) cDNA cloning and mRNA expression of neuropeptide Y in orange spotted grouper, Epinephelus coioides. Comparative Biochemistry and Physiology B Biochemical and Molecular Biology 142(1):79–89

    Google Scholar 

  • Chiu KW, Lee YC (1992) Cardiac activity of some peptide hormones in the frog, Rana tigrina. Comparative Biochemistry and Physiology C 103(3):483–487

    CAS  Google Scholar 

  • Chiu KW, Sham JS (1985) Adrenergic receptors of isolated snake atria. Comparative Biochemistry and Physiology C 81(2):445–450

    CAS  Google Scholar 

  • Chiu KW, Wong VC, Chan MY, Pang PK (1986) Blood pressure homeostasis in the snake, Ptyas korros. General and Comparative Endocrinology 64(2):300–304

    PubMed  CAS  Google Scholar 

  • Chiu KW, Lee YC, Pang KT (1990) The vasorelaxant effect of atrial natriuretic peptide in the frog. General and Comparative Endocrinology l 78(1):42–47

    CAS  Google Scholar 

  • Chiu AT, Smith RD, Timmermans PBMWM (1994) Defining Angiotensin Receptor Subtypes. In: Saavendra JM, Timmermans PBMWM (eds) Angiotensin Receptors. Plenum, New York, pp 49–65

    Google Scholar 

  • Cho KW, Kim SH, Koh GY, Seul KH (1988) Renal and hormonal responses to atrial natriuretic peptide and turtle atrial extract in the freshwater turtle, Amyda japonica. Journal of Experimental Zoology 247:139–145

    CAS  Google Scholar 

  • Chou CF, Loh CB, Foo YK, Shen S, Fielding BC, Tan TH, Khan S, Wang Y, Lim SG, Hong W, Tan YJ, Fu J (2006) ACE2 orthologues in non-mammalian vertebrates (Danio, Gallus, Fugu, Tetraodon and Xenopus). Gene 377:46–55

    PubMed  CAS  Google Scholar 

  • Cipolle MD, Zehr JE (1984) Characterization of the renin–angiotensin system in the turtle Pseudemys scripta. American Journal of Physiology 247(1Pt2):R15–R23

    PubMed  CAS  Google Scholar 

  • Cobb CS, Frankling SC, Rankin JC, Brown JA (2002) Angiotensin converting enzyme-like activity in tissues from the river lamprey or lampern, Lampetra fluviatilis, acclimated to freshwater and seawater. General and Comparative Endocrinology 127(1):8–15

    PubMed  CAS  Google Scholar 

  • Cobb CS, Frankling SC, Thorndyke MC, Jensen FB, Rankin JC, Brown JA (2004) Angiotensin I-converting enzyme-like activity in tissues from the Atlantic hagfish (Myxine glutinosa) and detection of immunoreactive plasma angiotensins. Comparative Biochemistry and Physiology: Biochemistry and Molecular Biology 138(4):357–364

    PubMed  Google Scholar 

  • Collantes M, Bodegas ME, Sesma MP, Villaro AC (2003) Distribution of adrenomedullin and proadrenomedullin N-terminal 20 peptide immunoreactivity in the pituitary gland of the frog Rana perezi. General and Comparative Endocrinology 133:50–60

    PubMed  CAS  Google Scholar 

  • Collins E, Bracamonte MP, Burnett JC Jr, Miller VM (2000) Mechanism of relaxations to dendroaspis natriuretic peptide in canine coronary arteries. Journal of Cardiovascular Pharmacology 35(4):614–618

    PubMed  CAS  Google Scholar 

  • Conklin D J, Olson KR (1994a) Angiotensin II relaxation of rainbow trout vessels in vitro. American Journal of Physiology 266:R1856–R1860

    PubMed  CAS  Google Scholar 

  • Conklin DJ, Olson KR (1994b) Compliance and smooth muscle reactivity of rainbow trout (Oncorhynchus mykiss) vessels in vitro. Journal of Comparative Physiology B 163:657–663

    Google Scholar 

  • Corti A, Mannarino C, Mazza R, Angelone T, Longhi R, Tota B (2004) Chromogranin A N-terminal fragments vasostatin-1 and the synthetic CGA 7–57 peptide act as cardiostatins on the isolated working frog heart. General and Comparative Endocrinology 136(2):217–224

    PubMed  CAS  Google Scholar 

  • Cossins A, Fraser J, Hughes M, Gracey A (2006) Post-genomic approaches to understanding the mechanisms of environmentally induced phenotypic plasticity. Journal of Experimental Biology 209(Pt 12):2328–2336

    PubMed  CAS  Google Scholar 

  • Cousins KL, Farrell AP (1996) Stretch-induced release of atrial natriuretic factor from the heart of rainbow trout (Oncorhynchus mykiss). Canadian Journal of Zoology 74:380–387

    CAS  Google Scholar 

  • Currie MG, Newman WH (1986) Evidence for alpha-1 adrenergic receptor regulation of atriopeptin release from the isolated rat heart. Biochemical and Biophysical Research Communications 137(1):94–100

    PubMed  CAS  Google Scholar 

  • Dashow L, Epple A (1985) Plasma catecholamines in the lamprey: intrinsic cardiovascular messengers? Comparative Biochemistry and Physiology C 82(1):119–122

    CAS  Google Scholar 

  • de Bold AJ (1979) Heart atria granularity effects of changes in water–electrolyte balance. Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine 161(4):508–511

    CAS  Google Scholar 

  • de Bold AJ, Bencosme SA (1973) Studies on the relationship between the catecholamine distribution in the atrium and the specific granules present in atrial muscle cells. 2. Studies on the sedimentation pattern of atrial noradrenaline and adrenaline. Cardiovascular Research 7(3):364–369

    PubMed  CAS  Google Scholar 

  • de Bold AJ, Flynn TG (1983) Cardionatrin I—a novel heart peptide with potent diuretic and natriuretic properties. Basic Life Sciences 33(3):297–302

    CAS  Google Scholar 

  • de Bold AJ, Borenstein HB, Veress AT, Sonnenberg H (1981) A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Basic Life Sciences 28(1):89–94

    CAS  Google Scholar 

  • de Bold AJ, Ma KK, Zhang Y, de Bold ML, Bensimon M, Khoshbaten A (2001) The physiological and pathophysiological modulation of the endocrine function of the heart. Canadian Journal of Physiology and Pharmacology 79(8):705–714 (Review)

    PubMed  CAS  Google Scholar 

  • de Bruno MP, Coviello A (1992) Effects of atrial natriuretic peptide and toad heart extract on isolated toad Bufo arenarum aortic rings. General and Comparative Endocrinology 88:424–433

    Google Scholar 

  • de Gasparo M, Husain A, Alexander W, Catt KJ, Chiu AT, Drew M, Goodfriend T, Harding JW, Inagami T, Timmermans PB (1995) Proposed update of angiotensin receptor nomenclature. Hypertension 25(5):924–927

    PubMed  CAS  Google Scholar 

  • Deftos LJ, Björnsson BT, Burton DW, O'Connor DT, Copp DH (1987) Chromogranin A is present in and released by fish endocrine tissue. Basic Life Sciences 40(22):2133–2136

    CAS  Google Scholar 

  • Delcayre C, Silvestre JB, Garnier A, Oubenaissa A, Cailmail S, Tatara E, Swynghedauw B, Robert V (2000) Cardiac aldosterone production and ventricular remodeling. Kidney International 57:1346–1351

    PubMed  CAS  Google Scholar 

  • Donald JA, Vomachka AJ, Evans DH (1992) Immunohistochemical localisation of natriuretic peptides in the brains and hearts of the spiny dogfish Squalus acanthias and the Atlantic hagfish Myxine glutinosa. Cell and Tissue Research 270:535–545

    PubMed  CAS  Google Scholar 

  • Dzau VJ (1993) Tissue renin–angiotensin system in myocardial hypertrophy and failure. A.M.A. Archives of Internal Medicine 153(8):937–942

    CAS  Google Scholar 

  • Ebert SN, Thompson RP (2001) Embryonic epinephrine synthesis in the rat heart before innervation: association with pacemaking and conduction tissue development. Circulation Research 88:117–124

    PubMed  CAS  Google Scholar 

  • Eddy FB (2005) Role of nitric oxide in larval and juvenile fish. Comparative Biochemistry and Physiology A Molecular and Integrative Physiology 142(2):221–230

    CAS  Google Scholar 

  • Eddy FB, Smith NF, Hazon N, Grierson C (1990) Circulatory and ionoregulatory effects of atrial natriuretic peptide on rainbow trout (Salmo gairdneri Richardson) fed normal or high levels of dietary salt. Fish Physiology and Biochemistry 8:321–327

    CAS  Google Scholar 

  • Eddy FB, McGovern L, Acock N, McGeer JC (1999) Cardiovascular responses of eggs, embryos and alevins of Atlantic salmon and rainbow trout to nitric oxide donors, sodium nitroprusside and isosorbide dinitrate, and inhibitors of nitric oxide synthase, N-nitro-l-arginine methyl ester and aminoguanidine, following short- and long-term exposure. Journal of Fish Biology 55(A):119–127

    CAS  Google Scholar 

  • Ehinger B, Falck B, Persson H, Sporrono B (1968) Adrenergic and cholinesterase-containing neurons of the heart. Histochemie 16:197–205

    PubMed  CAS  Google Scholar 

  • Ehlers MRW, Riordan JF (1990) In: Laragh JH, Brenner BM (eds) Hypertension: Pathophysiology, Diagnosis, and Management, Angiotensin Converting Enzyme: Biochemistry and Molecular Biology. Raven, New York, pp 1217–1231

    Google Scholar 

  • Ellison JP, Hibbs RG (1974) Catecholamine-containing cells of the guinea pig heart: an ultrastructural study. Journal of Molecular and Cellular Cardiology 6:17–26

    PubMed  CAS  Google Scholar 

  • Evans DH (1991) Rat atriopeptin dilates vascular smooth muscle of the ventral aorta from the shark (Squalus acanthias) and the hagfish (Myxine glutinosa). Journal of Experimental Biology 157:551–555

    PubMed  CAS  Google Scholar 

  • Evans DH, Harrie AC (2001) Vasoactivity of the ventral aorta of the American eel (Anguilla rostrata), Atlantic hagfish (Myxine glutinosa), and sea lamprey (Petromyzon marinus). Journal of Experimental Zoology 289(5):273–284

    PubMed  CAS  Google Scholar 

  • Evans DH, Chipouras E, Payne JA (1989) Immunoreactive atriopeptin in plasma of fishes: its potential role in gill hemodynamics. American Journal of Physiology 257:R939–R945

    PubMed  CAS  Google Scholar 

  • Evans DH, Toop T, Donald J, Forrest JN Jr (1993) C-Type natriuratic peptides are potent dilators of shark vascular smooth muscle. Journal of Experimental Zoology 265:84–87

    PubMed  CAS  Google Scholar 

  • Falkenhahn M, Franke F, Bohle RM (1995) Cellular distribution of angiotensin-converting enzyme after myocardial infarction. Hypertension 25:219–226

    PubMed  CAS  Google Scholar 

  • Fan J, Shuba YM, Morad M (1996) Regulation of cardiac sodium–calcium exchanger by beta-adrenergic agonists. Proceedings of the National Academy of Sciences of the United States of America 93(11):5527–5532

    PubMed  CAS  Google Scholar 

  • Farrell AP (1984) A review of cardiac performance in the teleost heart: intrinsic and humoral regulation. Canadian Journal Zoology 62:523–536

    Google Scholar 

  • Farrell AP, Jones DR (1992) The heart. In: Fish Physiology, vol XIIA, Academic Press, San Diego, pp 1–88

    Google Scholar 

  • Farrell AP, Olson KR (2000) Cardiac natriuretic peptides: a physiological lineage of cardioprotective hormones? Physiological and Biochemical Zoology 73(1):1–11

    PubMed  CAS  Google Scholar 

  • Farrell AP, MacLeod KR, Chancey B (1986) Intrinsic mechanical properties of the perfused rainbow trout heart and the effects of catecholamines and extracellular calcium under control and acidotic conditions. Journal of Experimental Biology 125:319–345

    PubMed  CAS  Google Scholar 

  • Ferrario CM, Iyer SN (1998) Angiotensin-(1–7): a bioactive fragment of the renin–angiotensin system. Regulatory Peptides 78(1–3):13–18

    PubMed  CAS  Google Scholar 

  • Feuilloley M, Yon L, Kawamura K, Kikuyama S, Gutkowska J, Vaudry H (1993) Immunocytochemical localization of atrial natriuretic factor (ANF)-like peptides in the brain and heart of the treefrog Hyla japonica: effect of weightlessness on the distribution of immunoreactive neurons and cardiocytes. The Journal of Comparative Neurology 330:24–47

    Google Scholar 

  • Fishman MC, Stainier DY (1994) Cardiovascular development. Prospects for a genetic approach. Circulatory Research 74(5):757–776

    CAS  Google Scholar 

  • Flynn TG, de Bold ML, de Bold AJ (1983) The amino acid sequence of an atrial peptide with potent diuretic and natriuretic properties. The Journal of Comparative Neurology 117(3):859–865

    CAS  Google Scholar 

  • Foxon GEH (1964) Blood and Respiration. In: Moore JA (ed) Physiology of the Amphibia. Academic, New York, pp 151–209

    Google Scholar 

  • Freer RJ, Pappano AJ, Peach MJ, Bing KT, McLean MJ, Vogel S, Sperelakis N (1976) Mechanism for the postive inotropic effect of angiotensin II on isolated cardiac muscle. Circulatory Research 39(2):178–183

    CAS  Google Scholar 

  • Fritsche R, Axelsson M, Franklin CE, Grigg GG, Holmgren S, Nilsson S (1993) Respiratory and cardiovascular responses to hypoxia in the Australian lungfish. Respiratory Physiology 94(2):173–187

    CAS  Google Scholar 

  • Fukuzawa A, Watanabe TX, Itahara Y, Nakajima K, Yoshizawa-Kumagaye K, Takei Y (1996) B-type natriuretic peptide isolated from frog cardiac ventricles. The Journal of Comparative Neurology 222(2):323–329

    CAS  Google Scholar 

  • Gamperl AK, Wilkinson M, Boutilier RG (1994) Beta adrenoreceptors in the trout (Oncorhynchus mykiss) heart: characterization, quantification, and effects of repeated catecholamine exposure. General and Comparative Endocrinology 95:259–272

    PubMed  CAS  Google Scholar 

  • Gannon JB, Burnstock G (1969) Exitatory adrenergic innervation of the fish heart. Comparative Biochemistry and Physiology 29:765–773

    PubMed  CAS  Google Scholar 

  • Garcia EA, Korbonits M (2006) Ghrelin and cardiovascular health. Current Opinion in Pharmacology 6:142–147

    PubMed  CAS  Google Scholar 

  • Garcia R, Lachance D, Thibault G, Cantin M, Gutkowska J (1986) Mechanisms of release of atrial natriuretic factor. II. Effect of chronic administration of alpha- and beta-adrenergic and cholinergic agonists on plasma and atrial ANF in the rat. Biochemical and Biophysical Research Communications 136(2):510–520

    PubMed  CAS  Google Scholar 

  • Garg R, Pandey KN (2005) Regulation of guanylyl cyclase/natriuretic peptide receptor-A gene expression. Peptides 26(6):1009–1023

    PubMed  CAS  Google Scholar 

  • Garofalo F, Imbrogno S, Gattuso A, Cerra MC (2006) Cardiac morpho-dynamics in Rana esculenta: influence of sex and season. Comparative Biochemistry and Physiology A Molecular and Integrative Physiology 145(1):82–89

    Google Scholar 

  • Gattuso A, Mazza R, Pellegrino D, Tota B (1999) Endocardial endothelium mediates luminal ACh-NO signaling in isolated frog heart. American Journal of Physiology 276:H633–H641

    PubMed  CAS  Google Scholar 

  • Gattuso A, Mazza R, Imbrogno S, Sverdrup A, Tota B, Nylund A (2002) Cardiac performance in Salmo salar with infectious salmon anaemia (ISA): putative role of nitric oxide. Comparative Biochemistry and Physiology A Molecular and Integrative Physiology 52(1):11–20

    CAS  Google Scholar 

  • Gauthier C, Langin D, Balligand JL (2000) Beta3-adrenoceptors in the cardiovascular system. Trends in Pharmacological Sciences 21(11):426–431

    PubMed  CAS  Google Scholar 

  • Gesser H, Poupa O (1978) The role of intracellular Ca2+ under hypercapnic acidosis of cardiac muscle: comparative aspects. Journal of Comparative Physiology 127:307–313

    CAS  Google Scholar 

  • Glattard E, Angelone T, Strub JM, Corti A, Aunis D, Tota B, Metz-Boutigue MH, Goumon Y (2006) Characterization of natural vasostatin-containing peptides in rat heart. FEBS Journal 273(14):3311–3321

    PubMed  CAS  Google Scholar 

  • Graham MS, Farrell AP (1989) The effect of temperature acclimation and adrenaline on the performance of a perfused trout heart. Physiological Zoology 62:38–61

    Google Scholar 

  • Graham JA, Lamb JF (1968) The effect of adrenaline on the tension developed in contractures and twitches of the ventricle of the frog. Journal of Physiology 197(2):479–509

    PubMed  CAS  Google Scholar 

  • Gregg CM, Wideman RF Jr (1986) Effects of atriopeptin and chicken heart extract in Gallus domesticus. American Journal of Physiology 252:R543–R551

    Google Scholar 

  • Griendling KK, Ushio-Fukai M, Lassegue B, Alexander RW (1997) Angiotensin II signaling in vascular smooth muscle: new concepts. Hypertension 29:366–373

    PubMed  CAS  Google Scholar 

  • Harper RA, Stephens GA (1985) Blockade of the pressor response to angiotensins I and II in the bullfrog, Rana catesbeiana. General and Comparative Endocrinology 60(2):227–235

    PubMed  CAS  Google Scholar 

  • Hazon N, Balment RJ, Perrott M, O'Toole L (1989) The renin–angiotensin system and vascular and dipsogenic regulation in elasmobranchs. General and Comparative Endocrinology 74:230–236

    PubMed  CAS  Google Scholar 

  • Hazon N, Tierney ML, Hamano K, Ashida K, Takei Y (1995) Endogenous angiotensins, angiotensin II competitive binding inhibitors and converting enzyme inhibitor in elasmobranch fish. Netherlands Journal of Zoology 45:117–120

    Google Scholar 

  • Hazon N, Cerra MC, Tierney ML, Tota B, Takei Y (1997) Elasmobranch Renin Angiotensin System and the Angiotensin Receptor. In: Kawashima S, Kikuyama S (eds) Advances in Comparative Endocrinology. Proceedings of the XIII International Congress of Comparative Endocrinology. Monduzzi Editore, Bologna, Italy, pp 1307–1312

    Google Scholar 

  • Hedberg A, Nilsson S (1975) Vago-sympathetic innervation of the heart of the puff-adder, Bitis arietans. Comparative Biochemistry and Physiology C 53:3–8

    Google Scholar 

  • Helle KB, Lönning S (1973) Sarcoplasmic reticulum in the portal vein heart and ventricle of the cyclostome Myxine glutinosa L. Journal of Molecular and Cellular Cardiology 5(5):433–439

    PubMed  CAS  Google Scholar 

  • Helle KB, Lönning S, Blascho H (1972) Observations on the chromaffin granules of the ventricle and the portal vein heart of Myxine glutinosa L. Sarsia 51:97–106

    Google Scholar 

  • Helle KB, Miralto A, Pihl KE, Tota B (1983) Structural organization of the normal and anoxic heart of Scyllium stellare. Cell and Tissue Research 231(2):399–414

    PubMed  CAS  Google Scholar 

  • Helle KB, Corti A, Metz-Boutigue MH, Tota B (2007) The endocrine role for chromogranin A: a prohormone for peptides with regulatory properties. Cellular and Molecular Life Sciences 64(22):2863–2886

    PubMed  CAS  Google Scholar 

  • Herman CA, Robleto DO, Mata PL, Heller RS (1986) Cardiovascular responses to catecholamines at 12 degrees C in the American bullfrog (Rana catesbeiana). Journal of Experimental Zoology 240(1):17–23

    PubMed  CAS  Google Scholar 

  • Hicks JW (2002) The physiological and evolutionary significance of cardiovascular shunting patterns in reptiles. Cellular and Molecular Life Sciences 17:241–245

    Google Scholar 

  • Hicks JM, Farrell AP (2000) The cardiovascular responses of the red-eared slider (Trachemys scripta) acclimated to either 22 or 5 degrees C. II. Effects of anoxia on adrenergic and cholinergic control. Journal of Experimental Biology 203(Pt 24):3775–3784

    PubMed  CAS  Google Scholar 

  • Hillyard SD (1999) Behavioral, molecular and integrative mechanisms of amphibian osmoregulation. Journal of Experimental Zoology 283(7):662–674

    PubMed  CAS  Google Scholar 

  • Hobbs A, Foster P, Prescott C, Scotland R, Ahluwalia A (2004) Natriuretic peptide receptor-C regulates coronary blood flow and prevents myocardial ischemia/reperfusion injury: novel cardioprotective role for endothelium-derived C-type natriuretic peptide. Circulation 110(10):1231–1235

    PubMed  CAS  Google Scholar 

  • Holmgren S (1995) Neuropeptide control of the cardiovascular system in fish and reptiles. Brazilian Journal of Medical and Biological Research 28(11–12):1207–1216

    PubMed  CAS  Google Scholar 

  • Holmgren S, Jensen J (2001) Evolution of vertebrate neuropeptides. Brain Research Bulletin 55:723–735

    PubMed  CAS  Google Scholar 

  • Holtwick R, van Eickels M, Skryabin BV, Baba HA, Bubikat A, Begrow F, Schneider MD, Garbers DL, Kuhn M (2003) Pressure-independent cardiac hypertrophy in mice with cardiomyocyte-restricted inactivation of the atrial natriuretic peptide receptor guanylyl cyclase-A. Journal of Clinical Investigation 111(9):1399–1407

    PubMed  CAS  Google Scholar 

  • Horiuchi M, Akishita M, Dzau VJ (1999) Recent progress in angiotensin II type 2 receptor research in the cardiovascular system. Hypertension 33:613–621

    PubMed  CAS  Google Scholar 

  • Hove JR, Köster RW, Forouhar AS, Acevedo-Bolton G, Fraser SE, Gharib M (2003) Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421(6919):172–177

    PubMed  CAS  Google Scholar 

  • Huang MH, Ewy GA (2001) Sympathetic reinnervation of the transplanted heart. The New England Journal of Medicine 345:1914–1915

    PubMed  CAS  Google Scholar 

  • Huang MH, Friend DS, Sunday ME, Singh K, Haley K, Austen KF, Kelly RA, Smith TW (1996) An intrinsic adrenergic system in mammalian heart. Journal of Clinical Investigation 98:1298–1303

    PubMed  CAS  Google Scholar 

  • Huang MH, Bahl JJ, Wu Y, Hu F, Larson DF, Roeske WR, Ewy GA (2005) Neuroendocrine properties of intrinsic cardiac adrenergic cells in fetal rat heart. American Journal of Physiology Heart and Circulatory Physiology 288:H497–H503

    PubMed  CAS  Google Scholar 

  • Icardo JM, Ojeda JL, Colvee E, Tota B, Wong WP, Ip YK (2005) Heart inflow tract of the African lungfish Protopterus dolloi. Journal of Morphology 263:30–38

    PubMed  Google Scholar 

  • Icardo JM, Amelio D, Garofalo F, Colvee E, Cerra MC, Wong WP, Tota B, Ip YK (2008) The structural characteristics of the heart ventricle of the African lungfish Protopterus dolloi: freshwater and aestivation. Journal of Anatomy 213:106–119

    PubMed  Google Scholar 

  • Iglesias MJ, Pineiro R, Blanco M, Gallego R, Dieguez C, Gualillo O, Gonzales-Juanatey JR, Lago F (2004) Growth hormone releasing peptide (ghrelin) is synthesized and secreted by cardiomyocytes. Cardiovascular Research 62:481–488

    PubMed  CAS  Google Scholar 

  • Ikeda K, Tojo K, Oki Y, Nakao K (2002) Urocortin has cell-proliferative effects on cardiac non-myocytes. Life Science 71:1929–1938

    CAS  Google Scholar 

  • Imbrogno S, De Iuri L, Mazza R, Tota B (2001) Nitric oxide modulates cardiac performance in the heart of Anguilla anguilla. Journal of Experimental Biology 204:1719–1727

    PubMed  CAS  Google Scholar 

  • Imbrogno S, Cerra MC, Tota B (2003) Angiotensin II-induced inotropism requires an endocardial endothelium–nitric oxide mechanism in the in-vitro heart of Anguilla anguilla. Journal of Experimental Biology 206:2675–2684

    PubMed  CAS  Google Scholar 

  • Imbrogno S, Angelone T, Corti A, Adamo C, Helle KB, Tota B (2004) Influence of vasostatins, the chromogranin A-derived peptides, on the working heart of the eel (Anguilla anguilla): negative inotropy and mechanism of action. General and Comparative Endocrinology 139(1):20–28

    PubMed  CAS  Google Scholar 

  • Imbrogno S, Angelone T, Adamo C, Pulerà E, Tota B, Cerra MC (2006) Beta3-adrenoceptor in the eel (Anguilla anguilla) heart: negative inotropy and NO-cGMP-dependent mechanism. Journal of Experimental Biology 209(Pt 24):4966–4973

    PubMed  CAS  Google Scholar 

  • Inagami T, Kambayashi Y, Ichiki T, Tsuzuki S, Eguchi S, Yamakawa T (1999) Angiotensin receptors: molecular biology and signalling. Clinical and Experimental Pharmacology and Physiology 26(7):544–549

    PubMed  CAS  Google Scholar 

  • Inoue K, Naruse K, Yamagami S, Mitani H, Suzuki N, Takei Y (2003a) Four functionally distinct C-type natriuretic peptides found in fish reveal evolutionary history of the natriuretic peptide system. Proceedings of the National Academy of Science of United States of America 100(17):10079–10084

    CAS  Google Scholar 

  • Inoue K, Russell MJ, Olson KR, Takei Y (2003b) C-type natriuretic peptide of rainbow trout (Oncorhynchus mykiss): primary structure and vasorelaxant activities. General and Comparative Endocrinology 130:185–192

    PubMed  CAS  Google Scholar 

  • Ishiyama Y, Kitamura K, Kato J, Sakata J, Kangawa K, Eto T (1997) Changes in cardiac adrenomedullin concentration in renovascular hypertensive rats. Hypertension Research 20:113–117

    PubMed  CAS  Google Scholar 

  • Iwai N, Inagami T (1992) Identification of two subtypes in the rat type I angiotensin II receptor. FEBS Letters 298(2–3):257–260

    PubMed  CAS  Google Scholar 

  • Jacobsson A, Fritsche R (1999) Development of adrenergic and cholinergic cardiac control in larvae of the African clawed frog Xenopus laevis. Physiological and Biochemical Zoology 72(3):328–338

    PubMed  CAS  Google Scholar 

  • Jamieson JD, Palade GE (1964) Specific granules in atrial muscle cells. Journal of Cell Biology 23:151–172

    PubMed  CAS  Google Scholar 

  • Jankowski M, Hajjar F, Kawas SA, Mukaddam-Daher S, Hoffman G, McCann SM, Gutkowska J (1998) Proceedings of the National Academy of Science of United States of America 95:14558–14563

    CAS  Google Scholar 

  • Janssens PA, Cohen PP (1968) Biosynthesis of urea in the estivating African lungfish and in Xenopus laevis under conditions of water shortage. Comparative Biochemistry and Physiology 24:887–898

    PubMed  CAS  Google Scholar 

  • Ji H, Sandberg K, Zhang Y, Catt KJ (1993) Molecular cloning, sequencing and functional expression of an amphibian angiotensin II receptor. Biochemical and Biophysical Research Communications 194:756–762

    PubMed  CAS  Google Scholar 

  • Johnson WE, Propper CR (2000) Effects of dehydration on plasma osmolality, thirst-related behavior, and plasma and brain angiotensin concentrations in Couch's spadefoot toad, Scaphiopus couchii. Journal of Experimental Zoology 286:572–584

    PubMed  CAS  Google Scholar 

  • Joss JM, Itahara Y, Watanabe TX, Nakajima K, Takei Y (1999) Teleost-type angiotensin is present in Australian lungfish, Neoceratodus forsteri. General and Comparative Endocrinology 114:206–212

    PubMed  CAS  Google Scholar 

  • Ju YK, Allen DG (1999) How does beta-adrenergic stimulation increase the heart rate? The role of intracellular Ca2+ release in amphibian pacemaker cells. Journal of Physiology 516 (Pt 3):793–804

    PubMed  CAS  Google Scholar 

  • Jurevicius J, Skeberdis VA, Fischmeister R (2003) Role of cyclic nucleotide phosphodiesterase isoforms in cAMP compartmentation following beta2-adrenergic stimulation of ICa,L in frog ventricular myocytes. Journal of Physiology 551(Pt 1):239–252

    PubMed  CAS  Google Scholar 

  • Kaiya H, Takei Y (1996a) Changes in plasma atrial and ventricular natriuretic peptide concentrations after transfer of eels from fresh water to seawater or vice versa. General and Comparative Endocrinology 104:337–345

    PubMed  CAS  Google Scholar 

  • Kaiya H, Takei Y (1996b) Osmotic and volaemic regulation of atrial and ventricular natriuretic peptide secretion in conscious eels. Journal of Endocrinology 149:441–447

    PubMed  CAS  Google Scholar 

  • Kaiya H, Kojima M, Hosoda H, Riley LG, Hirano T, Grau EG, Kangawa K (2003a) Amidated fish ghrelin: purification, cDNA cloning in the Japanese eel and its biological activity. Journal of Endocrinology 176:415–423

    PubMed  CAS  Google Scholar 

  • Kaiya H, Kojima M, Hosoda H, Riley LG, Hirano T, Grau EG,Kangawa K (2003b) Identification of tilapia ghrelin and its effects on growth hormone and prolactin release in the tilapia, Oreochromis mossambicus. Comparative Biochemistry and Physiology B Biochemical and Molecular Biology 135:421–429

    Google Scholar 

  • Kaiya H, Kojima M, Hosoda H, Moriyama S, Takahashi A, Kawauchi H, Kangawa K (2003c) Peptide purification, cDNA and genomic DNA cloning, and functional characterization of ghrelin in rainbow trout. Endocrinology 144:5215–5226

    PubMed  CAS  Google Scholar 

  • Kasuya Y, Hirohama T, Uemura H (1992) Distribution of immunoreactive atrial and brain natriuretic peptides in the heart of the newt, Cynops pyrrhogaster. Acta Histochemica et Cytochemica 25:363–469

    CAS  Google Scholar 

  • Kato J, Tsuruda T, Kitamura K, Eto T (2003) Adrenomedullin: a possible autocrine or paracrine hormone in the cardiac ventricles. Hypertension Research 26:S113–S119

    PubMed  CAS  Google Scholar 

  • Katugampola SD, Pallikaros Z, Davenport AP (2001) [125I-His(9)]-ghrelin, a novel radioligand for localizing GHS orphan receptors in human and rat tissue: up-regulation of receptors with athersclerosis. British Journal of Clinical Pharmacology 134(1):143–149

    CAS  Google Scholar 

  • Kawakoshi A, Hyodo S, Yasudal A, Takei Y (2003) A single and novel natriuretic peptide is expressed in the heart and brain of the most primitive vertebrate, the hagfish (Eptatretus burgeri). Journal of Molecular Endocrinology 31(1):209–222

    PubMed  CAS  Google Scholar 

  • Kawakoshi A, Hyodo S, Inoue K, Kobayashi Y, Takei Y (2004) Four natriuretic peptides (ANP, BNP, VNP and CNP) coexist in the sturgeon: identification of BNP in fish lineage. Journal of Molecular Endocrinology 32(2):547–555

    PubMed  CAS  Google Scholar 

  • Kawakoshi A, Kaiya H, Riley LG, Hirano T, Grau EG, Miyazato M, Hosoda H, Kangawa K (2007) Identification of a ghrelin-like peptide in two species of shark, Sphyrna lewini and Carcharhinus melanopterus. General and Comparative Endocrinology 151(3):259–268

    PubMed  CAS  Google Scholar 

  • Kaye DM, Kelly RA, Smith TW (1996) Cytokines and cardiac hypertrophy: roles of angiotensin II and basic fibroblast growth factor. Clinical and Experimental Pharmacology and Physiology. Supplement S136–S141

    Google Scholar 

  • Kennedy BP, Mahata SK, O'Connor DT, Ziegler MG (1998) Mechanism of cardiovascular actions of the chromogranin A fragment catestatin in vivo. Peptides 19:1241–1248

    PubMed  CAS  Google Scholar 

  • Kiemer AK, Fürst R, Vollmar AM (2005) Vasoprotective actions of the atrial natriuretic peptide. Current medicinal chemistry. Cardiovascular and Hematological Agents 3(1):11–21

    PubMed  CAS  Google Scholar 

  • Kim SH, Ryu H, Kang CW, Kim SZ, Seul KH, Cho KW (1994) Atrial natriuretic peptide immunoreactivity in the eggs of the silkworm Bombyx mori. General and Comparative Endocrinology 94(1):151–156

    PubMed  CAS  Google Scholar 

  • Kisch B (1956) Electron microscopy of the atrium of the heart. I. Guinea pig. Experimental Medicine and Surgery 14(2–3):99–112

    PubMed  CAS  Google Scholar 

  • Kitamura K, Kangawa K, Kawamoto M, Ichiki Y, Nakamura S, Matsuo H, Eto T (1993) Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. Biochemical and Biophysical Research Communications 192:553–560

    PubMed  CAS  Google Scholar 

  • Kloas W, Reinecke M, Hanke W (1994) Role of the atrial natriuretic peptide for adrenal regulation in the teleost fish Cyprinus carpio. American Journal of Physiology 267:R1034–R1042

    PubMed  CAS  Google Scholar 

  • Kloberg AJ, Fritsche R (2002) Catecholamines are present in larval Xenopus laevis: a potential source for cardiac control. Journal of Experimental Zoology 292(3):293–303

    PubMed  CAS  Google Scholar 

  • Kobayashi H, Takei Y (1996) Biological Actions of ANGII. In: Bradshaw SD, Burggren W, Heller HC, Ishii S, Langer H, Neuweiler G, Randall DJ (eds) The Renin–Angiotensin System. Comparative Aspects. Zoophysiology, Vol. 35. Springer, Berlin, pp 113–171

    Google Scholar 

  • Koeslag JH, Saunders PT, Wessels JA (1999) The chromogranins and the counterregulatory hormones: do they make homeostatic sense? Journal of Physiology 517:643–649

    PubMed  CAS  Google Scholar 

  • Kohn A (1903) Die Paraganglien. Archiv für mikroskopische Anatomie 62:263–365

    Google Scholar 

  • Kojima M, Hosoda H, Date Y, Nakazato M, Matuso H, Kangawa K (1999) Ghrelin is a growth-hormone-releasing acylated peptide. Nature 402:656–660

    PubMed  CAS  Google Scholar 

  • Koller KJ, Lowe DG, Bennett GL, Minamino N, Kangawa K, Matsuo H, Goeddel DV (1991) Selective activation of the B natriuretic peptide receptor by C-type natriuretic peptide (CNP). Science 252(5002):120–123

    PubMed  CAS  Google Scholar 

  • Krüger PG, Mahata SK, Helle KB (2003) Catestatin (CgA344–364) stimulates mast cell release of histamine in a manner comparable to mastoparan and other cationic charged neuropeptides. Regulatory Peptides 114:29–35

    PubMed  Google Scholar 

  • Larsen TH, Helle KB, Saetersdal T (1994) Immunoreactive atrial natriuretic peptide and dopamine beta-hydroxylase in myocytes and chromaffin cells of the heart of the African lungfish, Protopterus aethiopicus. General and Comparative Endocrinology 95(1):1–12

    PubMed  CAS  Google Scholar 

  • Laurent, P. Holmgren S, Nilsson S (1983) Nervous and humoral control of the fish heart: structure and function. Comparative Biochemistry and Physiology 76:A525–A542

    Google Scholar 

  • Lavras AC, Fichman M, Hiraichi E, Boucault MA, Tobo T (1978) Components of the renin–angiotensin system in the plasma of Bothrops jararaca. Agents Actions 8(1–2):141–145

    PubMed  CAS  Google Scholar 

  • Lazari MFM, Breno MC, Abreu LC, Picarelli ZP (1994) Some functional aspects of the renin–angiotensin system in the snake Bothrops jararaca. Comparative Biochemistry and Physiology A 108:135–152

    Google Scholar 

  • Lee J, Malvin RL (1987) Natriuretic response to homologous heart extract in aglomerular toadfish. American Journal of Physiology 252:R1055–R1058

    PubMed  CAS  Google Scholar 

  • Li L, Zhang LK, Pang YZ, Pan CS, Qi YF, Chen L, Wang X, Tang CS, Zhang J (2006) Cardioprotective effects of ghrelin and des-octanoyl ghrelin on myocardial injury induced by isoproterenol in rats. Acta Pharmacologica Sinica 27(5):527–535

    PubMed  Google Scholar 

  • Li J, Zhao X, Li X, Lerea KM, Olson SC (2007) Angiotensin II type 2 receptor-dependent increases in nitric oxide synthase expression in the pulmonary endothelium is mediated via a G alpha i3/Ras/Raf/MAPK pathway. Acta Pharmacologica Sinica 292(6):C2185–C2196

    CAS  Google Scholar 

  • Lijnen P, Petrov V (1999) Renin–angiotensin system, hypertrophy and gene expression in cardiac myocytes. Journal of Molecular and Cellular Cardiology 31(5):949–970

    PubMed  CAS  Google Scholar 

  • Lipke DW, Olson KR (1988) Distribution of angiotensin-converting enzyme-like activity in vertebrate tissues. Physiological Zoology 61:420–428

    CAS  Google Scholar 

  • Lisy O, Jougasaki M, Heublein DM, Schirger JA, Chen HH, Wennberg PW, Burnett JC (1999) Renal actions of synthetic Dendroaspis natriuretic peptide. Kidney International 56(2):502–508

    PubMed  CAS  Google Scholar 

  • Loewi O (1921) Übertragbarkeit der Herznervenwirkung. Pflügers Archiv für die gesamte Physiologie des Menschen und der Tiere 189:239–242

    Google Scholar 

  • Loewi O (1936) Quantitative und qualitative Untersuchungen über den Sympaticusstoff. Pflügers Archiv für die gesamte Physiologie des Menschen und der Tiere 237:504–514

    CAS  Google Scholar 

  • Loretz CA, Pollina C (2000) Natriuretic peptides in fish physiology. Comparative Biochemistry and Physiology A Molecular and Integrative Physiology 125(2):169–187

    CAS  Google Scholar 

  • Loretz CA, Pollina C, Kaiya H, Sakaguchi H, Takei Y (1997) Local synthesis of natriuretic peptides in the eel intestine. Biochemical and Biophysical Research Communications 238:817–822

    PubMed  CAS  Google Scholar 

  • Luo J, Jankowski V, Henning L, Schluter H, Zidek W, Jankowski J (2006) Endogenous coenzyme A glutathione disulfide in human myocardial tissue. Journal of Endocrinological Investigation 29(8):688–693

    PubMed  CAS  Google Scholar 

  • Mahapatra NR, O'Connor DT, Vaingankar SM, Sinha Hikim AP, Mahata M, Ray S, Staite E, Wu H, Gu Y, Dalton N (2005) Hypertension from targeted ablation of chromogranin A can be rescued by the human ortholog. Journal of Endocrinological Investigation 115:1942–1952

    CAS  Google Scholar 

  • Mahata SK (2004) Catestatin — the catecholamine release inhibitory peptide: a structural and functional overview. Current Medicinal Chemistry — Immunology, Endocrine and Metabolic Agents 4:221–234

    CAS  Google Scholar 

  • Mahata SK, O'Connor DT, Mahata M, Yoo SH, Taupenot L, Wu H, Gill BM, Parmer RJ (1997) Novel autocrine feedback control of catecholamine release. A discrete chromogranin A fragment is a noncompetitive nicotinic cholinergic antagonist. The Journal of Clinical Investigation 100:1623–1633

    PubMed  CAS  Google Scholar 

  • Mahata SK, Mahata M, Wakade AR, O'Connor DT (2000) Primary structure and function of the catecholamine release inhibitory peptide catestatin (chromogranin A344–364): identification of amino acid residues crucial for activity. Journal of Molecular Endocrinology 14:1525–1535

    CAS  Google Scholar 

  • Mahata SK, Mahapatra NR, Mahata M, Wang TC, Kennedy BP, Ziegler MG, O'Connor DT (2003) Catecholamine secretory vesicle stimulus-transcription coupling in vivo. Demonstration by a novel transgenic promoter/photoprotein reporter and inhibition of secretion and transcription by the chromogranin A fragment catestatin. Journal of Biological Chemistry 278:32058–32067

    PubMed  CAS  Google Scholar 

  • Mahata SK, Mahata M, Wen G, Wong WB, Mahapatra NR, Hamilton BA, O'Connor DT (2004) The catecholamine release-inhibitory “catestatin” fragment of chromogranin a: naturally occurring human variants with different potencies for multiple chromaffin cell nicotinic cholinergic responses. Molecular Pharmacology 66:1180–1191

    PubMed  CAS  Google Scholar 

  • Marie JP, Guillemot H, Hatt PY (1976) Degree of granularity of the atrial cardiocytes. Morphometric study in rats subjected to different types of water and sodium load. Pathologie Biologie 24(8):549–554

    PubMed  CAS  Google Scholar 

  • Marsigliante S, Verri T, Barker S, Jimenez E,Vinson GP, Storelli C (1994) Angiotensin II receptor subtypes in eel (Anguilla anguilla). Journal of Molecular Endocrinology 12:61–69

    PubMed  CAS  Google Scholar 

  • Marsigliante S, Muscella A, Vilella S et al. (1996) A monoclonal antibody to mammalian angiotensin II AT1 receptor recognizes one of the angiotensin II receptor isoforms expressed by the eel (Anguilla anguilla). Journal of Molecular Endocrinology 16:45–56

    PubMed  CAS  Google Scholar 

  • Marsigliante S, Acierno R, Maffia M, Muscella A,Vinson GP, Storelli C (1997) Immunolocalisation of angiotensin II receptors in icefish (Chiondraco hamatus) tissues. Journal of Endocrinology 154:193–200

    PubMed  CAS  Google Scholar 

  • Masini MA, Sturla M, Napoli L, Uva BM (1996) Immunoreactive localization of vasoactive hormones (atrial natriuretic peptide and endothelin) in the heart of Protopterus annectens, an African lungfish. Cell Tissue Research 284(3):501–507

    PubMed  CAS  Google Scholar 

  • Mazza R, Mannarino C, Imbrogno S, Barbieri SF, Adamo C, Angelone T, Corti A, Tota B (2007) Crucial role of cytoskeleton reorganization in the negative inotropic effect of chromogranin A-derived peptides in eel and frog hearts. Regulatory Peptides 138(2–3):145–151

    PubMed  CAS  Google Scholar 

  • Mazza R, Gattuso A, Mannarino C, Brar BK, Barbieri SF, Tota B, Mahata SK (2008) Catestatin (chromogranin A344–364) is a novel cardiosuppressive agent: inhibition of isoproterenol and endothelin signaling in the frog heart. American Journal of Physiology Heart Circulatory Physiology 295:H113–H122

    CAS  Google Scholar 

  • McKendry JE, Bernier NJ, Takei Y, Duff DW, Olson KR, Perry SF (1999) Natriuretic peptides and the control of catecholamine release in two freshwater teleost and a marine elasmobranch fish. Fish Physiology and Biochemistry 20:61–77

    CAS  Google Scholar 

  • Metcalfe JD, Butler PJ (1989) The use of alpha-methylp-tyrosine to control circulating catecholamines in the dogfish Scyliorhinus canicula: the effects on gas exchange in normoxia and hypoxia. Journal of Experimental Biology 141:21–32

    CAS  Google Scholar 

  • Metz-Boutigue MH, Garcia-Sablone P, Hogue-Angeletti R, Aunis D (1993) Intracellular and extracellular processing of chromogranin A. Determination of cleavage sites. European Journal of Biochemistry 217(1):247–257

    PubMed  CAS  Google Scholar 

  • Mifune H, Suzuki S, Nokihara K, Noda Y (1996) Distribution of immunoreactive atrial and brain natriuretic peptides in the heart of the chicken, quail, snake and frog. Experimental Animals 45(2):125–133

    PubMed  CAS  Google Scholar 

  • Minerds KL, Donald JA (1997) Lack of evidence for functional natriuretic peptide receptors in the heart of the cane toad, Bufo marinus. Comparative Biochemistry and Physiology C Pharmacology, Toxicology and Endocrinology 118(2):233–240

    CAS  Google Scholar 

  • Minerds KL, Donald JA (2001) Natriuretic peptide receptors in the central vasculature of the toad, Bufo marinus. Comparative Biochemistry and Physiology 128:259–268

    PubMed  CAS  Google Scholar 

  • Molkentin JD (2003) A friend within the heart: natriuretic peptide receptor signaling. Journal of Clinical Investigation 111(9):1275–1277

    PubMed  CAS  Google Scholar 

  • Montpetit CJ, McKendry J, Perry SF (2001) The effects of C-type natriuretic peptide on catecholamine release in the Pacific spiny dogfish (Squalus acanthias). General and Comparative Endocrinology 123:210–221

    PubMed  CAS  Google Scholar 

  • Morimoto A, Nishikimi T, Yoshihara F, Horio T, Nagaya N, Matsuo H, Dohi K, Kangawa K (1999) Ventricular adrenomedullin levels correlate with the extent of cardiac hypertrophy in rats. Hypertension 33:1146–1152

    PubMed  CAS  Google Scholar 

  • Munoz M, Lopez JM, Sanches-Camacho C, Moreno N, Crespo M, Gonzalez A (2001) Comparative analysis of adrenomedullin-like immunoreactivity in the hypothalamus of amphibians. Microscopic Research Technology 54:173–187

    CAS  Google Scholar 

  • Murphy TJ, Nakamura Y, Takeuchi K, Alexander W (1993) Accelerated communication: cloned angiotensin receptor isoform from the turkey adrenal gland is pharmacologically distinct from mammalian angiotensin receptors. Molecular Pharmacology 44:1–7

    PubMed  CAS  Google Scholar 

  • Nandi J (1961) New arrangement of inter-renal and chromaffin tissues of teleost fishes. Science 134:389–390

    PubMed  CAS  Google Scholar 

  • Netchitailo P, Feuilloley M, Pelletier G, Leboulenger F, Cantin M, Gutkowska J, Vaudry H (1887) Atrial natriuretic factor-like immunoreactivity in the central nervous system of the frog. Neuroscience 22(1):341–359

    Google Scholar 

  • Netchitailo P, Feuilloley M, Pelletier G, Cantin M, De Lean A, Leboulenger F, Vaudry H (1986) Localization and characterization of atrial natriuretic factor (ANF)-like peptide in the frog atrium. Peptides 7(4):573–579

    PubMed  CAS  Google Scholar 

  • Netchitailo P, Feuilloley LM, Pelletier G, De Lean A, Ong H, Cantin M, Gutkowska J, Leboulenger F, Vaudry H (1988) Localization and identification of immunoreactive atrial natriuretic factor (ANF) in the frog ventricle. Peptides 9(1):1–6

    PubMed  CAS  Google Scholar 

  • Nickerson JG, Dugan SG, Drouin G, Perry SF, Moon TW (2003) Activity of the unique beta-adrenergic Na + /H + exchanger in trout erythrocytes is controlled by a novel beta3-AR subtype. American Journal of Physiology 285:R526–R535

    PubMed  Google Scholar 

  • Nilsson S (1983) Autonomic Nerve Function in Vertebrates. Springer, Berlin

    Google Scholar 

  • Nilsson S, Holmgren S (1992) Cardiovascular Control by Purines, 5-Hydroxytryptamine, and Neuropeptides. In: Hoar WS, Randall DJ, Farrell AP (eds) Fish Physiology, Vol. XIIB. Academic, San Diego, pp 301–341

    Google Scholar 

  • Nilsson S, Holmgren S, Grove DJ (1975) Effects of drugs and nerve stimulation on the spleen and arteries of two species of dogfish, Scyliorhinus canicula and Squalus acanthias. Acta Physiologica Scandinavica 95(3):219–230

    PubMed  CAS  Google Scholar 

  • Nilsson S, Abrahamsson T, Grove DJ (1976) Sympathetic nervous control of adrenaline release from the head kidney of the cod, Gadus morhua. Comparative Biochemistry and Physiology 55:C123–C127

    Google Scholar 

  • Nishimatsu S, Koyasu N, Sugaya T (1994) Isolation and characterization of two alternatively spliced complementary DNAs encoding a Xenopus laevis angiotensin II receptor. Biochimica et Biophysica Acta 1218:401–407

    PubMed  CAS  Google Scholar 

  • Nishimura H (2001) Angiotensin receptors — evolutionary overview and perspectives. Comparative Biochemistry and Physiology A Molecular and Integrative Physiology 128(1):11–30

    CAS  Google Scholar 

  • Nishimura H, Oguri M, Ogawa M, Sokabe H, Imai M (1970) Absence of renin in kidneys of elasmobranchs and cyclostomes. American Journal of Physiology 218(3):911–915

    PubMed  CAS  Google Scholar 

  • Nishimura H, Ogawa M, Sawyer WH (1973) Renin–angiotensin system in primitive bony fishes and a holocephalian. American Journal of Physiology 224(4):950–956

    PubMed  CAS  Google Scholar 

  • Nobels FR, de Herder WW, Kwekkeboom DJ, Coopmans W, Mulder A, Bouillon R, Lamberts SW (1994) Serum chromogranin A in the differential diagnosis of Cushing's syndrome. Endo European Journal of Endocrinology/European Federation of Endocrine Societies 131:589–593

    CAS  Google Scholar 

  • O'Connor DT, Kailasam MT, Kennedy BP, Ziegler MG, Yanaihara N, Parmer RJ (2002) Early decline in the catecholamine release-inhibitory peptide catestatin in humans at genetic risk of hypertension. Journal of Hypertension 20:1335–1345

    PubMed  Google Scholar 

  • Olivares-Reyes JA, Macías-Silva M, García-Sáinz JA (1997) Atypical angiotensin II receptors coupled to phosphoinositide turnover/calcium signalling in catfish hepatocytes. Biochimica et Biophysica acta 1357(2):201–208

    PubMed  CAS  Google Scholar 

  • Olson KR (1992) Blood and Extracellular Fluid Volume Regulation: Role of the Renin–Angiotensin, Kallikrein–Kinin System and Atrial Natriuretic Peptides. In: Hoar WS, Randall DJ, Farrell AP (eds) Fish Physiology, vol. XIIB, The Cardiovascular System. Academic, New York, pp 136–254

    Google Scholar 

  • Olson RK (1998) In: Evans HD (ed) The Physiology of Fishes, The Cardiovascular System. CRC, Boca Raton, pp 129–154

    Google Scholar 

  • Olson KR, Duff DW (1992) Cardiovascular and renal effects of eel and rat atrial natriuretic peptide in rainbow trout, Salmo gairdneri. Journal of Comparative Physiology B Biochemical, Systemic, and Environmental Physiology 162:408–415

    CAS  Google Scholar 

  • Olson KR, Meisheri KD (1989) Effects of atrial natriuretic factor on isolated arteries and perfused organs of trout. American Journal of Physiology 256:R10–R18

    PubMed  CAS  Google Scholar 

  • Olson KR, Villa J (1991) Evidence against nonprostanoid endothelium-derived relaxing factors in trout vessels. American Journal of Physiology 260:R925–R933

    PubMed  CAS  Google Scholar 

  • Olson KR, Lipke D, Datta Munshi JS, Moitra A, Ghosh TK, Kunwar G, Ahmad M, Roy PK, Singh ON, Nasar SS (1987) Angiotensin-converting enzyme in organs of air-breathing fish. General and Comparative Endocrinology 68(3):486–491

    PubMed  CAS  Google Scholar 

  • Olson KR, Chavez A, Conklin DJ, Cousins KL, Farrell AP, Ferlic R, Keen JE, Kne T, Kowalski KA Veldman T (1994) Localization of angiotensin II responses in the trout cardiovascular system. Journal of Experimental Biology 194:117–138

    PubMed  CAS  Google Scholar 

  • Opdyke DF, Holcombe R (1976) Response to angiotensins I and II and to AI converting enzyme inhibitor in a shark. American Journal of Physiology 231:1750–1753

    PubMed  CAS  Google Scholar 

  • Opdyke DF, Carroll RG, Keller NE, Taylor AA (1981) Angiotensin II releases catecholamines in dogfish. Comparative Biochemistry and Physiology C 70(1):131–134

    CAS  Google Scholar 

  • Opdyke DF, Carroll RG, Keller NE (1982a) Catecholamine release and blood pressure changes induced by exercise in dogfish. American Journal of Physiology 242(3):R306–R310

    PubMed  CAS  Google Scholar 

  • Opdyke DF, Wilde DW, Holcombe RF (1982b) Effect of angiotensin II on vascular resistance in whole-body perfused dogfish. Comparative Biochemistry and Physiology C 73(1):45–49

    CAS  Google Scholar 

  • Opdyke DF, Bullock J, Keller NE, Holmes K (1983) Effect of ganglionic blockade on catecholamine secretion in exercised dogfish. American Journal of Physiology 245(6):R915–R919

    PubMed  CAS  Google Scholar 

  • Osman AH, Yuge S, Hyodo S, Sato S, Maeda S, Marie H, Caceci T, Birukawa N, Urano A, Naruse K, Naruse M, Takei Y (2004) Molecular identification and immunohistochemical localization of atrial natriuretic peptide in the heart of the dromedary camel (Camelus dromedarius). Comparative Biochemistry and Physiology A Molecular and Integrative Physiology 139(4):417–424

    CAS  Google Scholar 

  • Ostádal B, Rychterová V (1971) Effect of necrogenic doses of isoproterenol on the heart of the tench (Tinca tinca—osteoichthyes), the frog (Rana temporaria—anura) and the pigeon (Columba livia—aves) Physiologia Bohemoslovaca 20(6):541–547

    PubMed  Google Scholar 

  • Ostádal B, Rychterová V, Poupa O (1968) Isoproterenol-induced acute experimental cardiac necrosis in the turtle (Testudo horsfieldi). The American Heart Hospital Journal 76(5):645–649

    Google Scholar 

  • Ostlund E, Bloom G, Adams-Ray J, Ritzen M, Siegman M, Nordenstam H, Lishajko F, Von Euler U (1960) Storage and release of catecholamines, and the occurrence of a specific submicroscopic granulation in hearts of cyclostomes. Nature 188:324–325

    PubMed  CAS  Google Scholar 

  • Otsuka N, Chihara J, Sakurada H, Kanda S (1977) Catecholamine-storing cells in the cyclostome heart. Arch Histol Jpn 40 Suppl:241–244

    PubMed  CAS  Google Scholar 

  • Oudit GY, Butler DG (1995) Angiotensin II and cardiovascular regulation in a freshwater teleost, Anguilla rostrata LeSueur. American Journal of Physiology 269(3Pt2):R726–R735

    PubMed  CAS  Google Scholar 

  • Oudit GY, Crackower MA, Backx PH, Penninger JM (2003) The role of ACE2 in cardiovascular physiology. Trends in Cardiovascular Medicine 13:93–101

    PubMed  CAS  Google Scholar 

  • Palade GE (1961) Secretory granules in the atrial myocardium. The Anatomical Record 19:262

    Google Scholar 

  • Papka RE (1976) Studies of cardiac ganglia in pre- and postnatal rabbits. Cell and Tissue Research 175:17–35

    PubMed  CAS  Google Scholar 

  • Parhar IS, Sato H, Sakuma Y (2003) Ghrelin gene in cichlid fish is modulated by sex and development. Biochemical and Biophysical Research Communications 305:169–175

    PubMed  CAS  Google Scholar 

  • Paton JF, Deuchars J, Ahmad Z, Wong LF, Murphy D, Kasparov S (2001) Adenoviral vector demonstrates that angiotensin II-induced depression of the cardiac baroreflex is mediated by endothelial nitric oxide synthase in the nucleus tractus solitarii of the rat. Journal of Physiology 531(Pt 2):445–458

    PubMed  CAS  Google Scholar 

  • Poulos et al. (1995) Atrial natriuretic peptide gene expression within invertebrate hearts. General and Comparative Endocrinology 100:61–68

    PubMed  CAS  Google Scholar 

  • Pellegrino D, Palmerini CA, Tota B (2004) No hemoglobin but NO: the icefish (Chionodraco hamatus) heart as a paradigm. Journal of Experimental Biology 207:3855–3864

    PubMed  CAS  Google Scholar 

  • Perry SF, Gilmour KM (1996) Consequences of catecholamine release on ventilation and blood oxygen transport during hypoxia and hypercapnia in an elasmobranch (Squalus acanthias) and a teleost (Oncorhynchus mykiss). Journal of Experimental Biology 199:2105–2118

    PubMed  CAS  Google Scholar 

  • Perry SF, Reid SG, Gilmour KM, Boijink CL, Lopes JM, Milsom WK, Rantin FT (2004) A comparison of adrenergic stress responses in three tropical teleosts exposed to acute hypoxia. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 287(1):R188–R197

    PubMed  CAS  Google Scholar 

  • Perry SF, Gilmour KM, Vulesevic B, McNeill B, Chew SF, Ip YK (2005) Circulating catecholamines and cardiorespiratory responses in hypoxic lungfish (Protopterus dolloi): a comparison of aquatic and aerial hypoxia. Physiological and Biochemical Zoology 78(3):325–334

    PubMed  CAS  Google Scholar 

  • Perry SF, Euverman R, Wang T, Loong AM, Chew SF, Ip YK, Gilmour KM (2008) Control of breathing in African lungfish (Protopterus dolloi): a comparison of aquatic and cocooned (terrestrialized) animals. Respiratory Physiology and Neurobiology 160(1):8–17

    PubMed  CAS  Google Scholar 

  • Peterson JB, Nelson DL, Ling E, Angeletti RH (1987) Chromogranin A-like proteins in the secretory granules of a protozoan, Paramecium tetraurelia. Agricultural and Biological Chemistry 262(36):17264–17267

    CAS  Google Scholar 

  • Petroff MV, Mundiña-Weilenmann C, Vittone L, Chiappe de Cingolani G, Mattiazzi A (1994) Lusitropic effects of alpha- and beta-adrenergic stimulation in amphibian heart. Molecular and Cellular Biochemistry 141(2):87–95

    PubMed  CAS  Google Scholar 

  • Peyraud-Waitzenegger M, Barthelemy L, Peyreaud C (1980) Cardiovascular and ventilatory effects of catecholamines in unstrained eels (Anguilla anguilla L.) Journal of Comparative Physiology B 138:367–375

    CAS  Google Scholar 

  • Pharmawati M, Gehring CA, Irving HR (1998) An immunoaffinity purified plant natriuretic peptide analogue modulates cGMP levels in the Zea mays root stele. Plant Science 137(1):107–115

    CAS  Google Scholar 

  • Pieroni M, Corti A, Tota B, Curnis F, Angelone T, Colombo B, Cerra MC, Bellocci F, Crea F, Maseri A (2007) Myocardial production of chromogranin A in human heart: a new regulatory peptide of cardiac function. European Heart Journal 29:1117–1127

    Google Scholar 

  • Poss KD, Wilson LG, Keating MT (2002) Heart regeneration in zebrafish. Science 298(5601):2188–2190

    PubMed  CAS  Google Scholar 

  • Poupa O, Carlsten A (1970) Isoproterenol-induced cardiac lesions in frog heart observed in vivo. American Heart Journal 80(6):843–844

    PubMed  CAS  Google Scholar 

  • Poupa O, Ostádal B (1969) Experimental cardiomegalies and “cardiomegalies” in free-living animals. Annals of the New York Academy of Sciences 156(1):445–468

    PubMed  CAS  Google Scholar 

  • Purdham DM, Zou MX, Rajapurohitam V, Karmazyn M (2004) Rat heart is a site of leptin production and action. American Journal of Physiology. Heart and Circulatory Physiology 287:H2877–H2884

    PubMed  CAS  Google Scholar 

  • Quassinti L, Maccari E, Murri O, Bramucci M (2007) Comparison of ACE activity in amphibian tissues: Rana esculenta and Xenopus laevis. Comparative Biochemistry and Physiology A Molecular and Integrative Physiology 146(1):119–123

    Google Scholar 

  • Randall DJ, Perry SF (1992) In: Randall DJ, Hoar WS (eds) Fish Physiology, vol XIIB, The cardiovascular system. Academic, New York

    Google Scholar 

  • Rankin JC, Watanabe TX, Nakajima K, Broadhead C, Takei Y (2004) Identification of angiotensin I in a cyclostome, Lampetra fluviatilis. Zoological Science 21(2):173–179

    PubMed  CAS  Google Scholar 

  • Reid IA (1992) Interactions between ANG II, sympathetic nervous system, and baroreceptor reflexes in regulation of blood pressure. American Journal of Physiology 262(6Pt1): E763–E778

    PubMed  CAS  Google Scholar 

  • Reinecke M, Nehls M, Forssmann WG (1985) Phylogenetic aspects of cardiac hormones as revealed by immunohistochemistry, electronmicroscopy, and bioassay. Peptides 6(Suppl 3):321–331

    PubMed  CAS  Google Scholar 

  • Reinecke M, Höög A, Ostenson CG, Efendic S, Grimelius L, Falkmer S (1991) Phylogenetic aspects of pancreastatin- and chromogranin-like immunoreactive cells in the gastro-entero-pancreatic neuroendocrine system of vertebrates. General and Comparative Endocrinology 83(2):167–182

    PubMed  CAS  Google Scholar 

  • Rumantir MS, Jennings GL, Lambert GW, Kaye DM, Seals DR, Esler MD (2000) The “adrenaline hypothesis” of hypertension revisited: evidence for adrenaline release from the heart of patients with essential hypertension. Journal of Hypertension 18:717–723

    PubMed  CAS  Google Scholar 

  • Ruskoaho H (1992) Atrial natriuretic peptide: synthesis, release, and metabolism. Pharmacological Reviews 44:479–602

    PubMed  CAS  Google Scholar 

  • Saetersdal TS, Sorensen E, Myklebust R, Helle KB (1975) Granule-containing cells and fibres in the sinus venosus of elasmobranchs. Cell and Tissue Research 163(4):471–490

    PubMed  CAS  Google Scholar 

  • Sadoshima J, Xu Y, Slayter HS, Izumo S (1993) Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 75:977–984

    PubMed  CAS  Google Scholar 

  • Samuels MA (2007) The brain–heart connection. Circulation 116(1):77–84

    PubMed  Google Scholar 

  • Sandberg K, Ji H (2001) Comparative analysis of amphimbian and mammalian angiotensin receptors. Comparative Biochemistry and Physiology A Molecular and Integrative Physiology 128(1):53–75

    CAS  Google Scholar 

  • Sandblom E, Axelsson M, Farrell AP (2006) Central venous pressure and mean circulatory filling pressure in the dogfish Squalus acanthias: adrenergic control and role of the pericardium. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology 291(5):R1465–R1473

    PubMed  CAS  Google Scholar 

  • Santer RM, Cobb JL (1972) The fine structure of the heart of the teleost, Pleuronectes platessa L. Z. Zeitschrift für Zellforschung und mikroskopische Anatomie (Vienna, Austria: 1948) 131(1): 1–14

    PubMed  CAS  Google Scholar 

  • Satchell GH (1991) Physiology and form of fish circulation. Cambridge University Press, Cambridge, England

    Google Scholar 

  • Sato A, Canny BJ, Autelitano DJ (1997) Adrenomedullin stimulates cAMP accumulation and inhibits atrial natriuretic peptide gene expression in cardiomyocyte. Biochemical and Biophysical Research Communications 230:311–314

    PubMed  CAS  Google Scholar 

  • Sawyer WH, Blair-West JR, Simpson PA, Sawyer MK (1976) Renal responses of Australian lungfish to vasotocin, angiotensin II, and NaCl infusion. American Journal of Physiology 231:593–602

    PubMed  CAS  Google Scholar 

  • Scheuermann D (1993) Comparative morphology, cytochemistry and innervation of chromaffin tissue in vertebrates. Journal of Anatomy 183:327–342

    PubMed  Google Scholar 

  • Schorb W, Booz GW, Dostal DE, Conrad KM, Chang KC, Baker KM (1993) Angiotensin II is mitogenic in neonatal rat cardiac fibroblasts. Circulation Research 72(6):1245–1254

    PubMed  CAS  Google Scholar 

  • Schütz H, Gray DA, Gerstberger R (1992) Modulation of kidney function in conscious Pekin ducks by atrial natriuretic factor. Endocrinology 130:678–684

    PubMed  Google Scholar 

  • Schweitz H, Vigne P, Moinier D, Frelin C, Lazdunski M (1992) A new member of the natriuretic peptide family is present in the venom of the green mamba (Dendroaspis angusticeps). The Journal of Biological Chemistry 267(20):13928–13932

    PubMed  CAS  Google Scholar 

  • Seddon M, Shah AM, Casadei B (2007) Cardiomyocytes as effectors of nitric oxide signalling. Cardiovascular Research 75(2):315–326

    PubMed  CAS  Google Scholar 

  • Shah AM (1996) Paracrine modulation of heart cell function by endothelial cells. Cardiovascular Research 31:847–867

    PubMed  CAS  Google Scholar 

  • Silldorff EP, Stephens GA (1992) The pressor response to exogenous angiotensin I and its blockade by angiotensin II analogues in the American alligator. General and Comparative Endocrinology 87(1):141–148

    PubMed  CAS  Google Scholar 

  • Skals M, Skovgaard N, Abe AS, Wang T (2005) Venous tone and cardiac function in the South American rattlesnake Crotalus durissus: mean circulatory filling pressure during adrenergic stimulation in anaesthetised and fully recovered animals. Journal of Experimental Biology 208(Pt 19):3747–3759

    PubMed  Google Scholar 

  • Slavíková J, Kuncová J, Reischig J, Dvoráková M (2003) Catecholaminergic neurons in the rat intrinsic cardiac nervous system. Neurochemical Research 28(3–4):593–598

    PubMed  Google Scholar 

  • Slivkoff MD, Warburton SJ (2003) An endocrinological update in toads: disparity between the cardiovascular effects of two angiotensin II analogs. General and Comparative Endocrinology 132:125–132

    PubMed  CAS  Google Scholar 

  • Smart D, Shaw C, Curry WJ, Johnston CF, Thim L, Halton DW, Buchanan KD (1992) The primary structure of TE-6: a novel neuropeptide from the nematode Ascaris suum. Biochemical and Biophysical Research Communications 187(3):1323–1329

    PubMed  CAS  Google Scholar 

  • Smith HW (1935) The metabolism of the lungfish II. General considerations of the fasting metabolism inactive fish. Journal of Cellular and Comparative Physiology 6:43–67

    CAS  Google Scholar 

  • Soares JB, Rocha-Sousa A, Castro-Chaves P, Henriques-Coelho T, Leite-Moreira AF (2006) Inotropic and lusitropic effects of ghrelin and their modulation by the endocardial endothelium, NO, prostaglandins, GHS-R1a and KCa channels. Peptides 27(7):1616–1623

    PubMed  CAS  Google Scholar 

  • Stainier DY, Fishman MC (1994) The zebrafish as a model system to study cardiovascular development. Trends in Cardiovascular Medicine 4:207–212

    PubMed  CAS  Google Scholar 

  • Stecyk JA, Farrell AP (2007) Effects of extracellular changes on spontaneous heart rate of normoxia- and anoxia-acclimated turtles (Trachemys scripta). Journal of Experimental Biology 210(Pt 3):421–431

    PubMed  CAS  Google Scholar 

  • Steiner HJ, Weiler R, Ludescher C, Schmid KW, Winkler H (1990) Chromogranins A and B are co-localized with atrial natriuretic peptides in secretory granules of rat heart. The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society 38:845–850

    CAS  Google Scholar 

  • Stinner JN, Ely DL (1993) Blood pressure during routine activity, stress, and feeding in black racer snakes (Coluber constrictor). American Journal of Physiology 264(1Pt2):R79–R84

    PubMed  CAS  Google Scholar 

  • Stridsberg M, Oberg K, Li Q, Engstrom U, Lundqvist G (1995) Measurements of chromogranin A, chromogranin B (secretogranin I), chromogranin C (secretogranin II) and pancreastatin in plasma and urine from patients with carcinoid tumours and endocrine pancreatic tumours. The Journal of Endocrinology 144:49–59

    PubMed  CAS  Google Scholar 

  • Stroth U, Unger T (1999) The renin–angiotensin system and its receptors. Journal of Cardoiovascular Pharmacology 33:S21–S28

    CAS  Google Scholar 

  • Sudoh T, Kangawa K, Minamino N, Matsuo H (1988) A new natriuretic peptide in porcine brain. Nature 332(6159):78–81

    PubMed  CAS  Google Scholar 

  • Sudoh T, Minamino N, Kangawa K, Matsuo H (1990) C-type natriuretic peptide (CNP): a new member of natriuretic peptide family identified in porcine brain. Biochemical and Biophysical Research Communications 168(2):863–870

    PubMed  CAS  Google Scholar 

  • Suzuki R, Togashi K, Ando K, Takei Y (1994) Distribution and molecular forms of C-type natriuretic peptide in plasma and tissue of a dogfish, Triakis scyllia. General and Comparative Endocrinology 96:378–384

    PubMed  CAS  Google Scholar 

  • Sys SU, Pellegrino D, Mazza R, Gattuso A, Andries LJ, Tota B (1997) Endocardial endothelium in the avascular heart of the frog: morphology and role of nitric oxide. Journal of Experimental Biology 200(Pt 24):3109–3118

    PubMed  CAS  Google Scholar 

  • Takei Y (2000) Structural and functional evolution of the natriuretic peptide system in vertebrates. International Review of Cytology 194:1–66

    PubMed  CAS  Google Scholar 

  • Takei Y, Hirose S (2002) The natriuretic peptide system in eels: a key endocrine system for euryhalinity? American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 282(4):R940–R951

    PubMed  CAS  Google Scholar 

  • Takei Y, Takahashi A, Watanabe TX, Nakajima K, Sakakibara S, Takao T, Shimonishi Y (1990) Amino acid sequence and relative biological activity of a natriuretic peptide isolated from eel brain. Biochemical and Biophysical Research Communications 170(2):883–891

    PubMed  CAS  Google Scholar 

  • Takei Y, Takahashi A, Watanabe TX, Nakajima K, Sakakibara S (1991) A novel natriuretic peptide isolated from eel cardiac ventricles. FEBS Letters 282(2):317–320

    PubMed  CAS  Google Scholar 

  • Takei Y, Hasegawa Y, Watanabe TX, Nakajima K, Hazon N (1993) A novel angiotensin I isolated from an elasmobranch fish. The Journal of Endocrinology 139(2):281–285

    PubMed  CAS  Google Scholar 

  • Takei Y, Takahashi A, Watanabe TX, Nakajima K, Ando K (1994a) Eel ventricular natriuretic peptide: isolation of a low molecular size form and characterization of plasma form by homologous radioimmunoassay. The Journal of Endocrinology 141:81–89

    PubMed  CAS  Google Scholar 

  • Takei Y, Takano M, Itahara Y, Watanabe TX, Nakajima K, Conklin DJ, Duff DW, Olson KR (1994b) Rainbow trout ventricular natriuretic peptide: isolation, sequencing and determination of biological activity. General and Comparative Endocrinology 96:420–426

    PubMed  CAS  Google Scholar 

  • Takei Y, Ueki M, Nishizawa T (1994c) Eel ventricular natriuretic peptide: cDNA cloning and mRNA expression. Journal of Molecular Endocrinology 13(3):339–345

    PubMed  CAS  Google Scholar 

  • Takei Y, Joss JMP, Kloas W, Rankin JC (2004a) Identification of angiotensin I in several vertebrate species: its structural and functional evolution. General and Comparative Endocrinology 135:286–292

    PubMed  CAS  Google Scholar 

  • Takei Y, Hyodo S, Katafuchi T, Minamino N (2004b) Novel fish-derived adrenomedullin in mammals: structure and possible function. Peptides 25(10):1643–1656

    PubMed  CAS  Google Scholar 

  • Takiyyuddin MA, Baron AD, Cervenka JH, Barbosa JA, Neumann HP, Parmer RJ, Sullivan PA, O'Connor DT (1991) Suppression of chromogranin-A release from neuroendocrine sources in man: pharmacological studies. The Journal of Clinical Endocrinology and Metabolism 72:616–622

    PubMed  CAS  Google Scholar 

  • Takiyyuddin MA, Parmer RJ, Kailasam MT, Cervenka JH, Kennedy B, Ziegler MG, Lin MC, Li J, Grim CE, Wright FA et al. (1995) Chromogranin A in human hypertension. Influence of heredity. Hypertension 26:213–220

    PubMed  CAS  Google Scholar 

  • Tatemoto K, Efendic S, Mutt V, Makk G, Feistner GJ, Barchas JD (1986) Pancreastatin, a novel pancreatic peptide that inhibits insulin secretion. Nature 324:476–478

    PubMed  CAS  Google Scholar 

  • Taylor EW (1992) In: Hoar WS, Randall DJ, Farrell AP (eds) Fish Physiology, vol XII, The Cardiovascular System. Academic Press, San Diego, pp343–387

    Google Scholar 

  • Taylor MJ, Clarck CL (1994) Evidence for a novel source of relaxin: atrial cardiocytes. The Journal of Endocrinology 142(2):R5–R8

    Google Scholar 

  • Tierney M, Takei Y, Hazon N (1997a) The presence of angiotensin II receptors in elasmobranchs. General and Comparative Endocrinology 105:9–17

    PubMed  CAS  Google Scholar 

  • Tierney ML, Hamano K, Anderson G, Takei Y, Ashida K, Hazon N (1997b) Interactions between the renin–angiotensin system and catecholamines on the cardiovascular system of elasmobranchs. Fish Physiology and Biochemistry 17:333–337

    CAS  Google Scholar 

  • Toews DP, Wentzell LA (1995) The role of the lymphatic system for water balance and acid-base regulation in the amphibia. Advances inComparative and Environmental Physiology 21:201–214

    Google Scholar 

  • Toop T, Donald JA (2004) Comparative aspects of natriuretic peptide physiology in non-mammalian vertebrates: a review. Journal of Comparative Physiology B 174:189–204

    CAS  Google Scholar 

  • Tota B (1983) Vascular and metabolic zonation in the ventricular myocardium of mammals and fishes. Comparative Biochemistry and Physiology A 76(3):423–437

    CAS  Google Scholar 

  • Tota B (1989) Vascular and metabolic zonation in the ventricular myocardium of mammals and fishes. Comparative Biochemistry and Physiology 76:423–427

    Google Scholar 

  • Tota B (1999) In: Hammlet WC (ed) Sharks, Skates and Rays: The Biology of Elasmobranch Fish. The Johns Hopkins University Press, Maryland, pp 238–272

    Google Scholar 

  • Tota B, Gattuso A (1996) Heart ventricle pumps in teleosts and elasmobranchs: a morphodynamic approach. Journal of Experimental Zoology 275:162–171

    Google Scholar 

  • Tota B, Trimmer B (eds) (2007) Nitric Oxide. Elsevier, Amsterdam

    Google Scholar 

  • Tota B, Cimini V, Salvatore G, Zummo G (1983) Comparative study of the arterial and lacunary systems of the ventricular myocardium of elasmobranchs and teleost fishes. The American Journal of Anatomy 167:15–32

    PubMed  CAS  Google Scholar 

  • Tota B, Mazza R, Angelone T, Nullans G, Metz-Boutigue MH, Aunis D, Helle KB (2003) Peptides from the N-terminal domain of chromogranin A (vasostatins) exert negative inotropic effects in the isolated frog heart. Regulatory Peptides 114(2–3):123–130

    PubMed  CAS  Google Scholar 

  • Tota B, Imbrogno S, Mannarino C, Mazza R (2004) Vasostatins and negative inotropy in vertebrate hearts. Current Medicinal Chemistry 4:195–201

    CAS  Google Scholar 

  • Tota B, Amelio D, Pellegrino D, Ip YK, Cerra MC (2005) NO modulation of myocardial performance in fish hearts. Comparative Biochemistry and Physiology A Molecular and Integrative Physiology 42(2):164–177

    Google Scholar 

  • Tota B, Imbrogno S, Mazza R, Gattuso A (2007a) NOS Distribution and NO Control of Cardiac Performance in Fish and Amphibian Hearts. In: Tota B, Trimmer B (eds) Nitric Oxide. Elsevier, Amsterdam

    Google Scholar 

  • Tota B, Quintieri AM, Di Felice V, Cerra MC (2007b) New biological aspects of chromogranin A-derived peptides: focus on vasostatins. Comparative Biochemistry and Physiology A Molecular and Integrative Physiology 147(1):11–18

    Google Scholar 

  • Trajanovska S, Inoue K, Takei Y, Donald JA (2007) Genomic analyses and cloning of novel chicken natriuretic peptide genes reveal new insights into natriuretic peptide evolution. Peptides 28(11):2155–2163

    PubMed  CAS  Google Scholar 

  • Trandaburu T, Ali SS, Trandaburu I (1999) Granin proteins (chromogranin A and secretogranin II C23–3 and C26–3) in the intestine of reptiles. Annales d'anatomie pathologique 181(3):261–268

    CAS  Google Scholar 

  • Tran van Chuoi M, Dolphin CT, Barker S, Clark AJ, Vinson GP (1999) Molecular cloning and characterization of the cDNA encoding the angiotensin II receptor of European eel Anguilla anguilla. GenBank Data Base AJ005132

    Google Scholar 

  • Tremblay J, Desjardins R, Hum D, Gutkowska J, Hamet P (2002) Biochemistry and physiology of the natriuretic peptide receptor guanylyl cyclases. Molecular and Cellular Biochemistry 230(1–2):31–47

    PubMed  CAS  Google Scholar 

  • Tsuzuki S, Eguchi S, Inagami T (1996) Inhibition of cell proliferation and activation of protein tyrosine phosphatase mediated by angiotensin II type 2 (AT2) receptor in R3T3 cells. Biophysical and Biochemical Research Communications 228:825–830

    CAS  Google Scholar 

  • Uchiyama M, Murayama T, Matsuda K, Watanabe TX, Takei Y (1997) Effects of homologous atrial, brain, and C-type natriuretic peptides on isolated heart and blood vessels of bullfrog. Zoological Science 14(5):843–847

    PubMed  CAS  Google Scholar 

  • Uchiyama M, Takeuchi T, Matsuda K (1998) Effects of homologous natriuretic peptides in isolated skin of the bullfrog, Rana catesbeiana. Comparative Biochemistry and Physiology C Pharmacology, Toxicology, and Endocrinology 120(1):37–42

    CAS  Google Scholar 

  • Uemura H, Naruse M, Takei Y, Nakamura S, Hirohama T, Ando K, Aoto T (1991) Immunoreactive and bioactive atrial natriuretic peptide in the carp heart. Zoological Science 8:885–891

    CAS  Google Scholar 

  • Uesaka T (1996) Synergistic action of neuropeptide Y and adrenaline in the eel atrium. Journal of Experimental Biology 199:1873–1880

    PubMed  CAS  Google Scholar 

  • Unniappan S, Peter RE (2005) Structure, distribution and physiological functions of ghrelin in fish. Comparative Biochemistry and Physiology A 140:396–408

    Google Scholar 

  • Unniappan S, Lin X, Cervini L, Rivier J, Kaiya H, Kangawa K, Peter RE (2002) Goldfish ghrelin: molecular characterization of the complementary deoxyribonucleic acid, partial gene structure, and evidence for its stimulatory role in food intake. Endocrinology 143:4143–4146

    PubMed  CAS  Google Scholar 

  • Urata H, Kinoshita A, Misono KS, Bumpus FM, Husain A (1990) Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart. Journal of Biological Chemistry 265:22348–22357

    PubMed  CAS  Google Scholar 

  • Uva B, Masini MA, Hazon N, O'Toole LB, Henderson IW, Ghiani P (1992) Renin and angiotensin converting enzyme in elasmobranchs. General and Comparative Endocrinology 86(3):407–412

    PubMed  CAS  Google Scholar 

  • Vesely DL (2006) Which of the cardiac natriuretic peptides is most effective for the treatment of congestive heart failure, renal failure and cancer? Clinical and Experimental Pharmacology and Physiology 33(3):169–176

    PubMed  CAS  Google Scholar 

  • Vesely DL, Giordano AT (1991) Atrial natriuretic peptide hormonal system in plants. Biochemical and Biophysicaal Research Communication 179(1):695–700

    CAS  Google Scholar 

  • Vesely DL, Giordano AT (1992) Atrial natriuretic factor-like peptide and its prohormone within single cell organisms. Peptides 13(1):177–182

    PubMed  CAS  Google Scholar 

  • Vesely DL, Douglass MA, Dietz JR, Gower WR Jr, McCormick MT, Rodriguez-Paz G, Schocken DD (1994) Three peptides from the atrial natriuretic factor prohormone amino terminus lower blood pressure and produce diuresis, natriuresis, and/or kaliuresis in humans. Circulation 90(3):1129–1140

    PubMed  CAS  Google Scholar 

  • Vickers C, Hales P, Kaushik V, Dick L, Gavin J, Tang J, Godbout K, Parsons T, Baronas E, Hsieh F, Acton S, Patane M, Nichols A, Tummino P (2002) Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. The Journal of Biological Chemistry 277:14838–14843

    PubMed  CAS  Google Scholar 

  • Volkmann R (1985) Electrical and mechanical activity of isoproterenol-damaged frog heart. Comparative Biochemistry and Physiology C 81(1):189–194

    CAS  Google Scholar 

  • Wahlqvist I, Campbell G (1988) Autonomic influences on heart rate and blood pressure in the toad, Bufo marinus, at rest and during exercise. Journal of Experimental Biology 134:377–396

    PubMed  CAS  Google Scholar 

  • Wang T, Taylor EW, Andrade D, Abe AS (2001) Autonomic control of heart rate during forced activity and digestion in the snake Boa constrictor. Journal of Experimental Biology 204(Pt 20):3553–3560

    PubMed  CAS  Google Scholar 

  • Wasser JS, Jackson DC (1991) Effects of anoxia and graded acidosis on the levels of circulating catecholamines in turtles. Respiration Physiology 84:363–377

    PubMed  CAS  Google Scholar 

  • Weiergraber M, Pereverzev A, Vajna R, Henry M, Schramm M, Nastainczyk W, Grabsch H, Schneider T (2000) Immunodetection of alpha1E voltage-gated Ca(2+) channel in chromogranin-positive muscle cells of rat heart, and in distal tubules of human kidney. E Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society 48:807–819

    CAS  Google Scholar 

  • Wendelaar Bonga SE (1997) The stress response in fish. Physiological Reviews 77(3):591–625

    PubMed  CAS  Google Scholar 

  • West NH, Kimmel P, Topor ZL, Evered MD (1998) The role of angiotensin in arterial blood pressure regulation in the toad Bufo marinus. Journal of Experimental Biology 201(Pt14):2219–2224

    PubMed  CAS  Google Scholar 

  • Woo SH, Morad M (2001) Bimodal regulation of Na(+) – Ca(2+) exchanger by beta-adrenergic signaling pathway in shark ventricular myocytes. Proceedings of the National Academy of Sciences of the United States of America 98(4):2023–2028

    PubMed  CAS  Google Scholar 

  • Xiang H (1994) Comparative aspects of the role of neuropeptide Y in the regulation of the vertebrate heart. Cardioscience 5(4):209–213

    PubMed  CAS  Google Scholar 

  • Yamada H, Fabris B, Allen AM, Jackson B, Johnston CI, Mendelsohn AO (1991) Localization of angiotensin converting enzyme in rat heart. Proceedings of the National Academy of Sciences of the United States of America 68(1):141–149

    CAS  Google Scholar 

  • Yamakawa H, Imamura T, Matsuo T, Onitsuka H, Tsumori Y, Kato J, Kitamura K, Koiwaya Y, Eto T (2000) Diastolic wall stress and ANG II in cardiac hypertrophy and gene expression induced by volume overload. American Journal of Physiology. Heart and Circulatory Physiology American Journal of Physiology 279:H2939–H2946

    CAS  Google Scholar 

  • Yang Q, Gower WR Jr, Li C, Chen P, Vesely DL (1999) Atrial natriuretic-like peptide and its prohormone within Metasequoia. Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine 221(3):188–192

    CAS  Google Scholar 

  • Zehr JE, Standen DJ, Cipolle MD (1981) Characterization of angiotensin pressor responses in the turtle Pseudemys scripta. American Journal of Physiology 240(5):R276–R281

    PubMed  CAS  Google Scholar 

  • Zhang Y, Jenkinson E, Olson KR (1995) Vascular compliance and mean circulatory filling pressure in trout: effects of ACE inhibition. American Journal of Physiology 268:H1814–H1820

    PubMed  CAS  Google Scholar 

  • Zudaire E, Cuesta N, Martínez A, Cuttitta F (2005) Characterization of adrenomedullin in birds. General and Comparative Endocrinology 143(1):10–20

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Tota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tota, B., Cerra, M.C. (2009). The Endocrine–Paracrine Control of the Cardiovascular System. In: Glass, M., Wood, S. (eds) Cardio-Respiratory Control in Vertebrates. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-93985-6_14

Download citation

Publish with us

Policies and ethics