Skip to main content

Integrating Mineralogical Interpretation of HyLogger Data with HyMap Mineral Mapping, Mount Painter, South Australia

  • Chapter
  • First Online:
Innovations in Remote Sensing and Photogrammetry

Part of the book series: Lecture Notes in Geoinformation and Cartography ((LNGC))

Abstract

HyLogger, HyMap and PIMA II are three hyperspectral spectrometers variously sampling the electromagnetic spectrum between 450 and 2500 nm. At Blue Mine in the Mount Painter Province of South Australia, the opportunity arose to make a direct comparison of the three instruments. Drill hole BM5, an inclined diamond drill hole, intersected steeply dipping stratigraphy which outcrops in the steeply sloping, scree covered hills immediately above. HyMap data flown over the same district presented 5 × 5 m pixels each carrying spectra defined by 128 channel reflectance data from along the surface projected line of BM5.

This project has demonstrated that the three hyperspectral instruments provide mutually corroborative datasets in their ability to map mineralogy. It is clear that there remain significant differences between spectral datasets even after pre-processing. These differences limit the opportunity for automated mineral identification. In spite of those differences key common spectral features were identified in each dataset and mineralogical boundaries delineated.

A new subunit within the Wortupa Quartzite, identified mineralogically with these instruments, potentially offers better targeting of mineralisation in this part of the stratigraphy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson BE (1990) Annual report. Pan Australian Mining Ltd. South Australia. Department of Primary Industries and Resources. Open file Envelope, 3976 (unpublished)

    Google Scholar 

  • Coats RP, Blissett AH (1971) Regional and economic geology of the Mount Painter Province. Geological Survey of South Australia. Bulletin, 43

    Google Scholar 

  • Denniss, A, Huntington, J, Hore S (1999) Mount Fitton hyperspectral mineral mapping collaborative project. MESA Journal, Quarterly Earth Resources Journal of Primary Industries and Resources South Australia. 15: 12–14.

    Google Scholar 

  • Elliot P (1972) Department of Primary Industries and Resources. Open file Envelope, 1883 (unpublished)

    Google Scholar 

  • Envi (1999) ENVI User’s Guide version 3.2, 864 pp.

    Google Scholar 

  • Hewson R, Hausknecht P, Cudahy T, Batty S, Stamoulis V, Mauger A (2001) Geophysically integrated profiling airborne mineral mapping – Mount Fitton. MESA Journal. 23:16–19.

    Google Scholar 

  • Hewson RD, Cudahy TJ, Quigley M, Huntington JH, Whitbourn LB, Hausknecht P. (2003) Mapping talc mineralisation and associated alteration using airborne and satellite-borne spectrometry: a case study at Mount Fitton, South Australia. In: Dentith MC. (ed). Geophysical signatures of South Australian Mineral Deposits. Centre for Global Metallogeny, University of Western Australia. Publication 31. Australian Society of Exploration Geophysics. Special Publication 12: 213–221

    Google Scholar 

  • Huntington J, Mauger A, Skirrow R, Bastrakov E, Connor P, Mason P, Keeling J, Coward D, Berman M, Phillips R, Whitbourn L, Heithersay P, (2004) Automated mineralogical logging of core from the Emmie Bluff iron oxide copper-gold prospect, South Australia. PACRIM 2004 Congress, 19-22 September 2004, Adelaide, South Australia. AUSIMM Pub 5/2004

    Google Scholar 

  • HyVista Corporation (2008) http://www.hyvista.com.

  • Preiss, WV, (compiler), 1987. The Adelaide Geosyncline – late Proterozoic stratigraphy, sedimentation, palaeontology and tectonics. South Australian Geological Survey Bulletin 53: 438.

    Google Scholar 

  • Yates M (1982) A Review of Strataform Gold within the Adelaidean Sediments, Mount Painter Province, EL 871 and 627, South Australia. Open File Envelope 3976 (unpublished)

    Google Scholar 

Download references

Acknowledgements

Anglo American provided the HyMap data for analysis. AMIRA Project P685 was an essential precursor spectral logging campaigns at PIRSA’s Glenside Core Storage Facility. CSIRO Detection Technologies Group provided the HyLogging system and supported the instrument and post-processing during the campaigns. Georgina Gordon and staff at Glenside Core Storage Facility were responsible for logistics and provided efficient core handling and data collection. HyLogger™ and TSG Core™ are registered trademarks of CSIRO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.J. Mauger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mauger, A., Hore, S. (2009). Integrating Mineralogical Interpretation of HyLogger Data with HyMap Mineral Mapping, Mount Painter, South Australia. In: Jones, S., Reinke, K. (eds) Innovations in Remote Sensing and Photogrammetry. Lecture Notes in Geoinformation and Cartography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-93962-7_21

Download citation

Publish with us

Policies and ethics