• Takuro MochizukiEmail author
Part of the Lecture Notes in Mathematics book series (LNM, volume 1972)

Since we have explained the background and the motivation of the study in Preface, we will explain our problems and results, which are actually investigated in this monograph.

In Section 1.1, we explain the problems. In Section 1.2, we discuss the main issues for construction of invariants. In Section 1.3, transition formulas are stated under an assumption which makes the problems much simpler. They are enough for the study of invariants in the rank 2 case, and the results are explained in Section 1.4. Generalization to the higher rank case is discussed in Section 1.5. We explain how to use master spaces for our problems in Section 1.6.


Line Bundle Chern Class Ample Line Bundle Transition Formula Master Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Research Institute for Mathematical SciencesKyoto UniversityJapan

Personalised recommendations