Skip to main content

A Tutorial on AG Code Construction from a Gröbner Basis Perspective

  • Chapter
  • First Online:
Gröbner Bases, Coding, and Cryptography

Abstract

This chapter is meant primarily as an introduction to AG codes, with material on producing proper one-point descriptions of these codes as well. The terminology chosen is that of the easily understood concepts of multivariate polynomial rings and ideals of relations among the variables, which is more useful computationally than the more standard algebraic geometry terminology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • D. Augot, E. Betti, and E. Orsini, An introduction to linear and cyclic codes, this volume, 2009, pp. 47–68.

    Google Scholar 

  • P. Beelen, A. Garcia, and H. Stichtenoth, Towards a classification of recursive towers of function fields over finite fields, Finite Fields Appl. 12 (2006), no. 1, 56–77.

    Article  MathSciNet  MATH  Google Scholar 

  • W. Bosma, J. Cannon, and C. Playoust, The MAGMA algebra system. The user language, J. Symbolic Comput. 24 (1997), nos. 3–4, 235–265.

    Article  MathSciNet  MATH  Google Scholar 

  • B. Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal, Ph.D. thesis, Innsbruck, 1965.

    Google Scholar 

  • B. Buchberger, Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems, Aequationes Math. 4 (1970), 374–383.

    Article  MathSciNet  MATH  Google Scholar 

  • B. Buchberger, Gröbner-bases: An algorithmic method in polynomial ideal theory, Multidimensional systems theory. Reidel, Dordrecht, 1985, pp. 184–232.

    Chapter  Google Scholar 

  • B. Buchberger, An algorithmical criterion for the solvability of algebraic systems of equations, London Math. Soc. LNS 251 (1998), 535–545.

    MathSciNet  Google Scholar 

  • B. Buchberger, Bruno Buchberger’s PhD thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal, J. Symb. Comput. 41 (2006), nos. 3–4, 475–511.

    Article  MathSciNet  MATH  Google Scholar 

  • J. Cannon and C. Playoust, MAGMA: a new computer algebra system, Euromath. Bull. 2 (1996), no. 1, 113–144.

    MathSciNet  Google Scholar 

  • D. Cox, J. Little, and D. O’Shea, Ideals, varieties, and algorithms, third ed., Undergraduate Texts in Mathematics, Springer, Berlin, 2007, An introduction to computational algebraic geometry and commutative algebra.

    Book  MATH  Google Scholar 

  • A. Garcia and H. Stichtenoth, On the asymptotic behaviour of some towers of function fields over finite fields, J. Number Theory 61 (1996), no. 2, 248–273.

    Article  MathSciNet  MATH  Google Scholar 

  • A. Garcia and H. Stichtenoth, Asymptotics for the genus and the number of rational places in towers of function fields over a finite field, Finite Fields Appl. 11 (2005), no. 3, 434–450.

    Article  MathSciNet  MATH  Google Scholar 

  • O. Geil, Algebraic geometry codes from order domains, this volume, 2009, pp. 121–141.

    Google Scholar 

  • T. Høholdt, J. van Lint, and R. Pellikaan, Algebraic geometry of codes, Handbook of coding theory (V. S. Pless and W.C. Huffman, eds.), Elsevier, Amsterdam, 1998, pp. 871–961.

    Google Scholar 

  • D. A. Leonard, Finding the defining functions for one-point algebraic-geometry codes, IEEE Trans. on Inf. Th. 47 (2001), no. 6, 2566–2573.

    Article  MathSciNet  MATH  Google Scholar 

  • D. A. Leonard, A weighted module view of integral closures of affine domains of type I, Advances in Mathematics of Communication 3 (2009), no. 1, 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  • D. A. Leonard, A tutorial on AG code decoding from a Gröbner basis perspective, this volume, 2009, pp. 187–196.

    Google Scholar 

  • D. A. Leonard and R. Pellikaan, Integral closures and weight functions over finite fields, Finite Fields Appl. 9 (2003), no. 4, 479–504.

    Article  MathSciNet  MATH  Google Scholar 

  • J. B. Little, Automorphisms and encoding of AG and order domain codes, this volume, 2009, pp. 107–120.

    Google Scholar 

  • MAGMA, J. J. Cannon, W. Bosma (eds.), Handbook of MAGMA functions, edition 2.15, 2008.

    Google Scholar 

  • G. L. Matthews, Viewing multipoint codes as subcodes of one-point codes, this volume, 2009, pp. 399–402.

    Google Scholar 

  • T. Mora, Gröbner technology, this volume, 2009, pp. 11–25.

    Google Scholar 

  • S. Sakata, The BMS algorithm and decoding of AG codes, this volume, 2009, pp. 165–185.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas A. Leonard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leonard, D.A. (2009). A Tutorial on AG Code Construction from a Gröbner Basis Perspective. In: Sala, M., Sakata, S., Mora, T., Traverso, C., Perret, L. (eds) Gröbner Bases, Coding, and Cryptography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-93806-4_6

Download citation

Publish with us

Policies and ethics