Skip to main content

An Introduction to Linear and Cyclic Codes

  • Chapter
  • First Online:
Gröbner Bases, Coding, and Cryptography

Abstract

Our purpose is to recall some basic aspects about linear and cyclic codes. We first briefly describe the role of error-correcting codes in communication. To do this we introduce, with examples, the concept of linear codes and their parameters, in particular the Hamming distance.

A fundamental subclass of linear codes is given by cyclic codes, that enjoy a very interesting algebraic structure. In fact, cyclic codes can be viewed as ideals in a residue classes ring of univariate polynomials. BCH codes are the most studied family of cyclic codes, for which some efficient decoding algorithms are known, as the method of Sugiyama.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • A. M. Barg, E. Krouk, and H. C. A. van Tilborg, On the complexity of minimum distance decoding of long linear codes, IEEE Trans. on Inf. Th. 45 (1999), no. 5, 1392–1405.

    Article  MATH  Google Scholar 

  • L. M. Bazzi and S. K. Mitter, Some randomized code constructions from group actions, IEEE Trans. on Inf. Th. 52 (2006), 3210–3219.

    Article  MathSciNet  Google Scholar 

  • E. R. Berlekamp, Algebraic coding theory, McGraw–Hill, New York, 1968.

    MATH  Google Scholar 

  • E. R. Berlekamp, Algebraic coding theory (revised edition), Aegean Park, Walnut Creek, 1984.

    Google Scholar 

  • E. R. Berlekamp, R. J. McEliece, and H. C. A. van Tilborg, On the inherent intractability of certain coding problems, IEEE Trans. on Inf. Th. 24 (1978), no. 3, 384–386.

    Article  MATH  Google Scholar 

  • S. D. Berman, Semisimple cyclic and Abelian codes. II, Cybernetics 3 (1967), no. 3, 17–23.

    Article  MathSciNet  Google Scholar 

  • R. E. Blahut, Theory and practice of error control codes, Addison–Wesley, Reading, 1983.

    MATH  Google Scholar 

  • R. C. Bose and D. K. Ray-Chaudhuri, On a class of error correcting binary group codes, Information and Control 3 (1960), 68–79.

    Article  MathSciNet  MATH  Google Scholar 

  • P. Camion, A proof of some properties of Reed–Muller codes by means of the normal basis theorem, Combinatorial mathematics and its application, Univ. of North Carolina, Chapel Hill, 1969, pp. 371–376.

    Google Scholar 

  • G. Castagnoli, On the asymptotic badness of cyclic codes with block-lengths composed from a fixed set of prime factors, LNCS, vol. 357, Springer, Berlin, 1989, pp. 164–168.

    Google Scholar 

  • G. Castagnoli, J. L. Massey, P. A. Schoeller, and N. von Seeman, On repeated-root cyclic codes, IEEE Trans. on Inf. Th. 37 (1991), 337–342.

    Article  MATH  Google Scholar 

  • R. T. Chien, Cyclic decoding procedure for the Bose–Chaudhuri–Hocquenghem codes, IEEE Trans. on Inf. Th. 10 (1964), 357–363.

    Article  MathSciNet  MATH  Google Scholar 

  • G. D. Forney, On decoding BCH codes, IEEE Trans. on Inf. Th. 11 (1965), 549–557.

    Article  MathSciNet  MATH  Google Scholar 

  • E. Guerrini and A. Rimoldi, FGLM-like decoding: from Fitzpatrick’s approach to recent developments, this volume, 2009, pp. 197–218.

    Google Scholar 

  • R. W. Hamming, Error detecting and error correcting codes, Bell Systems Technical Journal 29 (1950), 147–160.

    MathSciNet  Google Scholar 

  • D. G. Hoffman, Coding theory: The essential, Dekker, New York, 1991.

    Google Scholar 

  • J. Justensen, A class of constructive asymptotically good algebraic codes, IEEE Trans. on Inf. Th. 18 (1972), no. 5, 652–656.

    Article  Google Scholar 

  • T. Kasami, A Gilbert-Varshamov bound for quasi-cyclic codes of rate 1/2, IEEE Trans. on Inf. Th. 20 (1974), 679–679.

    Article  MathSciNet  MATH  Google Scholar 

  • S. Lin, An introduction to error-correcting codes, Prentice Hall, New York, 1970.

    Google Scholar 

  • S. Lin and E. J. Weldon, Long BCH codes are bad, Information Control 11 (1967), 445–451.

    Article  MATH  Google Scholar 

  • F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes. I and II, North-Holland, Amsterdam, 1977.

    Google Scholar 

  • C. Martinez-Perez and W. Willems, Is the class of cyclic codes asymptotically good? IEEE Trans. on Inf. Th. 52 (2006), no. 2, 696–700.

    Article  MathSciNet  MATH  Google Scholar 

  • J. L. Massey, Shift-register synthesis and BCH decoding, IEEE Trans. on Inf. Th. 15 (1969), 122–127.

    Article  MathSciNet  MATH  Google Scholar 

  • T. Mora and E. Orsini, Decoding cyclic codes: the Cooper philosophy, this volume, 2009, pp. 69–91.

    Google Scholar 

  • W. W. Peterson and E. J. Weldon Jr., Error-correcting codes, second ed., MIT Press, Cambridge, 1972.

    MATH  Google Scholar 

  • V. Pless, Introduction to the theory of error-correcting codes, Wiley, New York, 1982.

    MATH  Google Scholar 

  • V. S. Pless, W. C. Huffman, and R. A. Brualdi (eds.), Handbook of coding theory, vols. I, II, North-Holland, Amsterdam, 1998.

    Google Scholar 

  • I. S. Reed and G. Solomon, Polynomial codes over certain finite fields, J. Soc. Indust. Appl. Math. 8 (1960), 300–304.

    Article  MathSciNet  MATH  Google Scholar 

  • C. E. Shannon, A mathematical theory of communication, Bell System Tech. J. 27 (1948), 379–423, 623–656.

    MathSciNet  MATH  Google Scholar 

  • Y. Sugiyama, S. Kasahara, S. Hirasawa, and T. Namekawa, A method for solving key equation for decoding Goppa codes, Inform. Contr. 27 (1975), 87–99.

    Article  MathSciNet  MATH  Google Scholar 

  • J. H. van Lint, Introduction to coding theory, third ed., Graduate Texts in Mathematics, vol. 86, Springer, Berlin, 1999.

    Book  MATH  Google Scholar 

  • A. Vardy, Algorithmic complexity in coding theory and the minimum distance problem, Proceedings of the twenty-ninth annual ACM symposium on Theory of computing, 1997, pp. 92–109.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Augot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Augot, D., Betti, E., Orsini, E. (2009). An Introduction to Linear and Cyclic Codes. In: Sala, M., Sakata, S., Mora, T., Traverso, C., Perret, L. (eds) Gröbner Bases, Coding, and Cryptography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-93806-4_4

Download citation

Publish with us

Policies and ethics