Skip to main content

Epipolar Geometry for Humanoid Robotic Heads

  • Conference paper
Cognitive Vision (ICVW 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5329))

Included in the following conference series:

Abstract

Stereoscopic vision is a capability that supports the ability of robots to interact with visually complex environments. Epipolar geometry captures the projective relationship between the cameras in a stereo vision system, assisting in the reconstruction of three-dimensional information. However, a basic problem arises for robots with active vision systems whose cameras move with respect to each other: the epipolar geometry changes with this motion. Such problems are especially noticeable in work with humanoid robots, whose cameras move in order to emulate human gaze behavior. We develop an epipolar kinematic model that solves this problem by building a kinematic model based on the optical properties of a stereo vision system. We show how such a model can be used in order to update the epipolar geometry for the head of a humanoid robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Li, G., Zucker, S.W.: Contextual inference in contour-based stereo correspondence. Int. J. of Computer Vision 69(1), 59–75 (2006)

    Article  Google Scholar 

  2. Li, G., Zucker, S.W.: Differential geometric consistency extends stereo to curved surfaces. In: Proceedings of the 9th European Conference on Computer Vision, pp. III: 44–57 (2006)

    Google Scholar 

  3. Zhang, Z.: A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(11), 1330–1334 (2000)

    Article  Google Scholar 

  4. Tsai, R.Y.: A versatile camera calibration technique for high-accuracy 3d machine vision metrology using off-the-shelf tv cameras and lenses. IEEE Journal of Robotics and Automation, 221–244 (1992)

    Google Scholar 

  5. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  6. Deriche, R., et al.: Robust recovery of the epipolar geometry for an uncalibrated stereo rig. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 800, pp. 567–576. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  7. Shih, S.W., Hung, Y.P., Lin, W.S.: Head/eye calibration of a binocular head by use of single calibration point. In: Proceedings of the IEEE Southwest Symposium on Image Analysis and Interpretation, pp. 154–159 (1994)

    Google Scholar 

  8. Li, M., Betsis, D.: Head-eye calibration. In: ICCV 1995: Proceedings of the Fifth International Conference on Computer Vision, Washington, DC, USA, p. 40. IEEE Computer Society, Los Alamitos (1995)

    Google Scholar 

  9. Tsai, R., Lenz, R.: Real time versatile robotics hand/eye calibration using 3d machine vision. In: Proceedings of IEEE International Conference on Robotics and Automation, 1998, April 24-29, 1988, vol. 1, pp. 554–561. IEEE Computer Society Press, Los Alamitos (1988)

    Google Scholar 

  10. Shiu, Y., Ahmad, S.: Calibration of wrist-mounted robotic sensors by solving homogeneous transform equations of the form ax=xb. IEEE Transactions on Robotics and Automation 5(1), 16–29 (1989)

    Article  Google Scholar 

  11. Tsai, R., Lenz, R.: A new technique for fully autonomous and efficient 3d robotics hand/eye calibration. IEEE Transactions on Robotics and Automation 5(3), 345–358 (1989)

    Article  Google Scholar 

  12. Shih, S.W., Jin, J.S., Wei, K.H., Hung, Y.P.: Kinematic calibration of a binocular head using stereo vision with the complete and parametrically continuous model. In: Casasent, D.P. (ed.) Proc. SPIE, Intelligent Robots and Computer Vision XI: Algorithms, Techniques, and Active Vision, November 1992. The Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, vol. 1825, pp. 643–657 (1992)

    Google Scholar 

  13. Shih, S.-W., Hung, Y.-P., Lin, W.-S.: Kinematic parameter identification of a binocular head using stereo measurements of single calibration point. Proceedings of the IEEE International Conference on Robotics and Automation 2, 1796–1801 (1995)

    Google Scholar 

  14. Bjorkman, M., Eklundh, J.-O.: A real-time system for epipolar geometry and ego-motion estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 506–513 (2000)

    Google Scholar 

  15. Björkman, M., Eklundh, J.O.: Real-time epipolar geometry estimation of binocular stereo heads. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 425–432 (2002)

    Article  Google Scholar 

  16. Luong, Q.-T., Faugeras, O.: The fundamental matrix: Theory, algorithms, and stability analysis. International Journal of Computer Vision 17(1), 43–75 (1996)

    Article  Google Scholar 

  17. Hartley, R.I.: In defence of the 8-point algorithm. In: ICCV 1995: Proceedings of the Fifth International Conference on Computer Vision, Washington, DC, USA, p. 1064. IEEE Computer Society Press, Los Alamitos (1995)

    Google Scholar 

  18. Dobbins, A.C., Jeo, R.M., Fiser, J., Allman, J.M.: Distance modulation of neural activity in the visual cortex. Science (281), 552–555 (1998)

    Google Scholar 

  19. Faugeras, O.: Three-dimensional computer vision: a geometric viewpoint. MIT Press, Cambridge (1993)

    Google Scholar 

  20. Intel Corporation: Open Source Computer Vision Library: Reference Manual (1999-2001)

    Google Scholar 

  21. Izquierdo, E., Guerra, V.: Estimating the essential matrix by efficient linear techniques. IEEE Transactions on Circuits and Systems for Video Technology 13(9), 925–935 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hart, J., Scassellati, B., Zucker, S.W. (2008). Epipolar Geometry for Humanoid Robotic Heads. In: Caputo, B., Vincze, M. (eds) Cognitive Vision. ICVW 2008. Lecture Notes in Computer Science, vol 5329. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92781-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92781-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92780-8

  • Online ISBN: 978-3-540-92781-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics