Skip to main content

Ecophysiological Characteristics of Mature Trees and Stands - Consequences for Old-Growth Forest Productivity

  • Chapter
  • First Online:
Old-Growth Forests

Part of the book series: Ecological Studies ((ECOLSTUD,volume 207))

Abstract

As trees become older and grow taller, they increase their relative fitness to competing trees or to other life forms, but also face constraints that differ drastically from those experienced by smaller species or early ontogenetic stages, including the maintenance costs and disadvantages of transporting water to a greater height and increased risk of breakage. No wonder that trees do not grow infinitely high. In general, absolute and relative growth rates tend to decrease with age and height. This decline in productivity – observed at both the tree and stand level – has been attributed to a range of processes, e.g. increasing respiratory demand and limitation of photosynthesis on the tree level, and, on the stand level, increasing sequestration of nutrients in slow-decomposing litter and ecophysiological differences between early-, mid- and late-successional canopies. This chapter will review these current hypotheses, first on the tree level, then on the stand level, as well as in the context of successional changes of community composition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abaimov AP, Sofronov MA (1996) The main trends of post-fire succession in near-tundra forests of Central Siberia. In: Goldammer JG, Furyaev VV (eds) Fire in ecosystems of Boreal Eurasia. Kluwer, Dordrecht, pp 372–386

    Google Scholar 

  • Abaimov AP, Prokushkin SG, Zyryanova OA, Kaverzina LN (1997) Peculiarities of forming and functioning larch forests on frozen soils (in Russian). Lesovedenie 5:13–23

    Google Scholar 

  • Anten NPR, Schieving F, Werger MJA (1995) Patterns of light and nitrogen distribution in relation to whole canopy carbon gain in C3 and C4 monocotyledonous and dicotyledonous species. Oecologia 101:504–513

    Article  Google Scholar 

  • Anten NPR, Werger MJA, Medina E (1998) Nitrogen distribution and leaf area indices in relation to photosynthetic nitrogen use efficiency in savanna grasses. Plant Ecol 138:63–75

    Article  Google Scholar 

  • Barnard HR, Ryan MG (2003) A test of the hydraulic limitation hypothesis in fast-growing Eucalyptus saligna. Plant Cell Environ 26:1235–1245

    Article  Google Scholar 

  • Bazzaz FA (1979) The physiological ecology of plant succession. Annu Rev Ecol Systematics 10:351–371

    Article  Google Scholar 

  • Becker P, Meinzer FC, Wullschleger SD (2000) Hydraulic limitation of tree height: a critique. Funct Ecol 14:4–11

    Article  Google Scholar 

  • Bernoulli M, Körner C (1999) Dry matter allocation in treeline trees. Phyton 39:7–12

    Google Scholar 

  • Binkley D, Stape J, Ryan MG, Barnard HR, Fownes J (2002) Age-related decline in forest ecosystem growth: an individual-tree, stand-structure hypothesis. Ecosystems 5:58–67

    Article  Google Scholar 

  • Bjoerkmann O, Demming-Adams B (1995) Regulation of photosynthetic light energy capture, conversion, and dissipation in leaves of higher plants. In: Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer, Berlin, pp 17–47

    Google Scholar 

  • Bond BJ, Czarnomski NM, Cooper C, Day ME, Greenwood MS (2007) Developmental decline in height growth in Douglas-fir. Tree Physiol 27:441–453

    PubMed  Google Scholar 

  • Burschel P, Huss J (1964) The reaction of beech seedlings to shade. Forstarchiv 35:225–233

    Google Scholar 

  • Carey EV, Sala A, Keane R, Callaway RM (2001) Are old forests underestimated as global carbon sinks? Global Change Biol 7:339–344

    Article  Google Scholar 

  • Cochard H, Peiffer M, LeGall K, Granier A (1997) Developmental control of xylem hydraulic resistances and vulnerability to embolism in Fraxinus excelsior L: impacts on water relations. J Exp Bot 48:655–663

    Article  CAS  Google Scholar 

  • Day ME, Greenwood MS, White AS (2001) Age-related changes in foliar morphology and physiology in red spruce and their influence on declining photosynthetic rates and productivity with tree age. Tree Physiol 21:1195–1204

    CAS  PubMed  Google Scholar 

  • Day ME, Greenwood MS, Diaz-Sala C (2002) Age- and size-related trends in woody plant shoot development: regulatory pathways and evidence for genetic control. Tree Physiol 22:507–513

    CAS  PubMed  Google Scholar 

  • Delzon S, Sartore M, Burlett R, Dewar R, Loustau D (2004) Hydraulic responses to height growth in maritime pine trees. Plant Cell Environ 27:1077–1087

    Article  Google Scholar 

  • Ehleringer JR, Bowling DR, Flanagan LB, Fessenden J, Helliker B, Martinelli LA, Ometto JP (2002) Stable isotopes and carbon cycle processes in forests and grasslands. Plant Biol 4:181–189

    Article  Google Scholar 

  • Equiza MA, Day ME, Jagels R, Li XC (2006) Photosynthetic downregulation in the conifer Metasequoia glyptostroboides growing under continuous light: the significance of carbohydrate sinks and paleoecophysiological implications. Can J Bot – Rev Can Bot 84:1453–1461

    Article  CAS  Google Scholar 

  • Falster DS, Westoby M (2003) Plant height and evolutionary games. Trends Ecol Evol 18:337–343

    Article  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537

    Article  CAS  Google Scholar 

  • Field C (1983) Allocating leaf nitrogen for the maximization of carbon gain – leaf age as a control on the allocation program. Oecologia 56:341–347

    Article  Google Scholar 

  • Flanagan LB, Ehleringer JR (1998) Ecosystem-atmosphere CO2 exchange: interpreting signals of change using stable isotope ratios. Trends Ecol Evol 13:10–14

    Article  Google Scholar 

  • Gould N, Minchin PEH, Thorpe MR (2004) Direct measurements of sieve element hydrostatic pressure reveal strong regulation after pathway blockage. Funct Plant Biol 31:987–993

    Article  Google Scholar 

  • Gower ST, McMurtrie RE, Murty D (1996) Aboveground net primary production decline with stand age: potential causes. Trends Ecol Evol 11:378–382

    Article  Google Scholar 

  • Hacke UG, Sperry JS, Ewers BE, Ellsworth DS, Schäfer KVR, Oren R (2000) Influence of soil porosity on water use in Pinus taeda. Oecologia 124:495–505

    Article  Google Scholar 

  • Hättenschwiler S, Handa IT, Egli L, Asshoff R, Ammann W, Körner C (2002) Atmospheric CO2 enrichment of alpine treeline conifers. New Phytol 156:363–375

    Article  Google Scholar 

  • Hoch G, Richter A, Körner C (2003) Non-structural carbon compounds in temperate forest trees. Plant Cell Environ 26:1067–1081

    Article  CAS  Google Scholar 

  • Hubbard RM, Bond BJ, Ryan MG (1999) Evidence that hydraulic conductance limits photosynthesis in old Pinus ponderosa trees. Tree Physiol 19:165–172

    PubMed  Google Scholar 

  • Irvine J, Law BE, Kurpius MR, Anthoni PM, Moore D, Schwarz PA (2004) Age-related changes in ecosystem structure and function and effects on water and carbon exchange in ponderosa pine. Tree Physiol 24:753–763

    CAS  PubMed  Google Scholar 

  • Jarvis PG (1976) The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos Trans R Soc Lond B 273:593–610

    Article  CAS  Google Scholar 

  • Kattge J, Wirth C, Nöllert S, Bönisch G (2008) Functional ecology of trees database. URL: http://www.bgc-jena.mpg.de/bgc-organisms/pmwiki.php/Research/FET

  • Kattge J, Knorr W, Raddatz T, Wirth C (2009) Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Global Change Biol (in press) doi: 10.1111/j.1365-2486.2008.01744.x

    Google Scholar 

  • Kira T, Shidei T (1967) Primary production and turnover of organic matter in different forest ecosystems of the Western Pacific. Jpn J Ecol 17:70–87

    Google Scholar 

  • Koch GW, Sillett SC, Jennings GM, Davis SD (2004) The limits to tree height. Nature 428:851–854

    Article  CAS  PubMed  Google Scholar 

  • Körner C, Asshoff R, Bignucolo O, Hättenschwiler S, Keel SG, Pelaez-Riedl S, Pepin S, Siegwolf RTW, Zotz G (2005) Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science 309:1360–1362

    Article  PubMed  Google Scholar 

  • Kutsch WL, Herbst M, Vanselow R, Hummelshoj P, Jensen NO, Kappen L (2001) Stomatal acclimation influences water and carbon fluxes of a beech canopy in northern Germany. Basic Appl Ecol 2:265–281

    Article  Google Scholar 

  • Lambers H, Poorter H (1992) Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Adv Ecol Res 23:187–261

    Article  CAS  Google Scholar 

  • Luyssaert S, Inglima I, Jung M, Richardson AD, Reichstein M, Papale D, Piao SL, Schulze ED, Wingate L, Matteucci G, Aragao L, Aubinet M, Beers C, Bernhofer C, Black KG, Bonal D, Bonnefond JM, Chambers J, Ciais P, Cook B, Davis KJ, Dolman AJ, Gielen B, Goulden M, Grace J, Granier A, Grelle A, Griffis T, Grünwald T, Guidolotti G, Hanson PJ, Harding R, Hollinger DY, Hutyra LR, Kolari P, Kruijt B, Kutsch W, Lagergren F, Laurila T, Law BE, Le Maire G, Lindroth A, Loustau D, Malhi Y, Mateus J, Migliavacca M, Misson L, Montagnani L, Moncrieff J, Moors E, Munger JW, Nikinmaa E, Ollinger SV, Pita G, Rebmann C, Roupsard O, Saigusa N, Sanz MJ, Seufert G, Sierra C, Smith ML, Tang J, Valentini R, Vesala T, Janssens IA (2007) CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biol 13:2509–2537

    Article  Google Scholar 

  • Magnani F, Mencuccini M, Grace J (2000) Age-related decline in stand productivity: the role of structural acclimation under hydraulic constraints. Plant Cell Environ 23:251–263

    Article  Google Scholar 

  • Magnani F, Mencuccini M, Borghetti M, Berbigier P, Berninger F, Delzon S, Grelle A, Hari P, Jarvis PG, Kolari P, Kowalski AS, Lankreijer H, Law BE, Lindroth A, Loustau D, Manca G, Moncrieff JB, Rayment M, Tedeschi V, Valentini R, Grace J (2007) The human footprint in the carbon cycle of temperate and boreal forests. Nature 447:848–850

    Article  PubMed  Google Scholar 

  • McDowell N, Barnard H, Bond BJ, Hinckley T, Hubbard RM, Ishii H, Köstner B, Magnani F, Marshall JD, Meinzer FC, Phillips N, Ryan MG, Whitehead D (2002a) The relationship between tree height and leaf area: sapwood area ratio. Oecologia 132:12–20

    Article  Google Scholar 

  • McDowell NG, Phillips N, Lunch C, Bond BJ, Ryan MG (2002b) An investigation of hydraulic limitation and compensation in large, old Douglas-fir trees. Tree Physiol 22:763–774

    CAS  PubMed  Google Scholar 

  • McDowell NG, Licata J, Bond BJ (2005) Environmental sensitivity of gas exchange in different-sized trees. Oecologia 145:9–20

    Article  PubMed  Google Scholar 

  • Meinzer FC (1993) Stomatal control of transpiration. Trends Ecol Evol 289–294

    Google Scholar 

  • Mencuccini M, Grace J (1996) Developmental patterns of above-ground hydraulic conductance in a Scots pine (Pinus sylvestris L.) age sequence. Plant Cell Environ 19:939–948

    Article  Google Scholar 

  • Minchin PEH, Lacointe A (2005) New understanding on phloem physiology and possible consequences for modelling long-distance carbon transport. New Phytol 166:771–779

    Article  CAS  PubMed  Google Scholar 

  • Monteith JL (1965) Radiation and crops. Exp Agric 1:241–251

    Article  Google Scholar 

  • Mund M, Kummetz E, Hein M, Bauer GA, Schulze ED (2002) Growth and carbon stocks of a spruce forest chronosequence in central Europe. For Ecol Manage 171:275–296

    Article  Google Scholar 

  • Neary DG, Klopatek CC, DeBano LF, Ffolliott PF (1999) Fire effects on belowground sustainability: a review and synthesis. For Ecol Manage 122:51–71

    Article  Google Scholar 

  • Niinemets U (2006) The controversy over traits conferring shade-tolerance in trees: ontogenetic changes revisited. J Ecol 94:464–470

    Article  Google Scholar 

  • Niinemets U, Valladares F (2006) Tolerance to shade, drought, and waterlogging of temperate Northern Hemisphere trees and shrubs. Ecol Monogr 76:521–547

    Article  Google Scholar 

  • Odum EP (1969) The strategy of ecosystem development. Science 164:262–270

    Article  CAS  PubMed  Google Scholar 

  • Oliver CD, Larson BC (1996) Forest stand dynamics. Update edn. Wiley, New York

    Google Scholar 

  • Phillips NG, Ryan MG, Bond BJ, McDowell NG, Hinckley TM, Cermak J (2003) Reliance on stored water increases with tree size in three species in the Pacific Northwest. Tree Physiol 23:237–245

    CAS  PubMed  Google Scholar 

  • Pothier D, Margolis HA, Poliquin J, Waring RH (1989) Relation between the permeability and the anatomy of Jack pine sapwood with stand development. Can J For Res 19:1564–1570

    Article  Google Scholar 

  • Ryan MG, Yoder BJ (1997) Hydraulic limits to tree height and tree growth. Bioscience 47:235–242

    Article  Google Scholar 

  • Ryan MG, Binkley D, Fownes JH (1997) Age-related decline in forest productivity: pattern and process. Adv Ecol Res 27:213–262

    Article  Google Scholar 

  • Ryan MG, Binkley D, Fownes JH, Giardina CP, Senock RS (2004) An experimental test of the causes of forest growth decline with stand age. Ecol Monogr 74:393–414

    Article  Google Scholar 

  • Saxe H, Kerstiens G (2005) Climate change reverses the competitive balance of ash and beech seedlings under simulated forest conditions. Plant Biol (Stuttg) 7:375–386

    Article  CAS  Google Scholar 

  • Schoettle AW (1994) Influence of tree size on shoot structure and physiology of Pinus contorta and Pinus aristata. Tree Physiol 14:1055–1068

    PubMed  Google Scholar 

  • Schulze ED (1970) The CO2-gas exchange of Fagus sylvatica in relation to climatic factors in the field. Flora 159:172–232

    Google Scholar 

  • Schulze ED (1972) The effect of light and temperature on the CO2 exchange of different growth forms in the ground flora of a montane Beech forest (in German). Oecologia 9:235–258

    Article  Google Scholar 

  • Schulze ED (2000) Carbon and nitrogen cycling in European forest ecosystems. Springer, Berlin

    Google Scholar 

  • Schulze ED, Wirth C, Mollicone D, Ziegler W (2005) Succession after stand replacing disturbances by fire, wind throw, and insects in the dark Taiga of Central Siberia. Oecologia 146:77–88

    Article  PubMed  Google Scholar 

  • Sperry JS, Adler FR, Campbell GS, Comstock JP (1998) Limitation of plant water use by rhizosphere and xylem conductance: results from a model. Plant Cell Environ 21:347–359

    Article  Google Scholar 

  • Spiegelhalter D, Thomas A, Best N, Lunn D (2003) WinBUGS User Manual, ver 1.4. http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/manual14.pdf

  • Sprugel DG, Ryan M, Brooks JR, Vogt KA, Martin TA (1995) Respiration from the organ level to the stand. In: Smith WJ, Hinckley TM (eds) Resource physiology of conifers: acquisition, allocation and utilisation. Academic, San Diego, pp 255–299

    Google Scholar 

  • Tyree MT, Ewers FW (1991) The hydraulic architecture of trees and other woody plants. New Phytol 119:345–360

    Article  Google Scholar 

  • Valladares F, Chico JM, Aranda I, Balaguer L, Dizengremel P, Manrique E, Dreyer E (2002) The greater seedling high-light tolerance of Quercus robur over Fagus sylvatica is linked to a greater physiological plasticity. Trees 16:395–403

    CAS  Google Scholar 

  • Vanninen P, Ylitalo H, Sievanen R, Makela A (1996) Effects of age and site quality on the distribution of biomass in Scots pine (Pinus sylvestris L). Trees Struct Funct 10:231–238

    Google Scholar 

  • Vitousek PM, White PS (1981) Process studies in succession. In: West DC, Shugart HH, Botkin DB (eds) Forest succession: concepts and application. Springer, New York, pp 267–276

    Google Scholar 

  • Walters MB, Reich PB (1999) Low-light carbon balance and shade tolerance in the seedlings of woody plants: do winter deciduous and broad-leaved evergreen species differ? New Phytol 143:143–154

    Article  Google Scholar 

  • Weiner J, Thomas SC (2001) The nature of tree growth and the “age-related decline in forest productivity”. Oikos 92:374–376

    Article  Google Scholar 

  • Weitz JS, Ogle K, Horn HS (2006) Ontogenetically stable hydraulic design in woody plants. Funct Ecol 20:191–199

    Article  Google Scholar 

  • Werger MJA, Hirose T (1991) Leaf nitrogen distribution and whole canopy photosynthetic carbon gain in herbaceous stands. Vegetatio 97:11–20

    Google Scholar 

  • Whitehead D, Edwards WR, Jarvis PG (1984) Conducting sapwood area, foliage area, and permeability in mature trees of Picea sitchensis and Pinus contorta. Can J For Res 14:940–947

    Article  Google Scholar 

  • Wieser G, Gigele T, Pausch H (2005) The carbon budget of an adult Pinus cembra tree at the alpine timberline in the Central Austrian Alps. Eur J For Res 124:1–8

    Google Scholar 

  • Yoder BJ, Ryan MG, Waring RH, Schoettle AW, Kaufmann MR (1994) Evidence of reduced photosynthetic rates in old trees. For Sci 40:513–527

    Google Scholar 

Download references

Acknowledgement

We would like to thank Michaela Knauer for helping with acquisition of trait data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner L. Kutsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kutsch, W.L., Wirth, C., Kattge, J., Nöllert, S., Herbst, M., Kappen, L. (2009). Ecophysiological Characteristics of Mature Trees and Stands - Consequences for Old-Growth Forest Productivity. In: Wirth, C., Gleixner, G., Heimann, M. (eds) Old-Growth Forests. Ecological Studies, vol 207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92706-8_4

Download citation

Publish with us

Policies and ethics