Skip to main content

Tropical Rain Forests as Old-Growth Forests

  • Chapter
  • First Online:

Part of the book series: Ecological Studies ((ECOLSTUD,volume 207))

Abstract

Rain forests are usually ‘old-growth forests’ par excellence, but they are not generally ‘virgin forests’, having been colonised by indigenous peoplexe 1 indigenous people in former times and undergone re-growth for several hundreds of years. They occupy the warm and wet regions of the Earth, occurring where the temperature of the coldest month is at least 18°C, and where every month has 100 mm of rain or more. They are no more leafy than old temperate forests (leaf area index 5–7.5), and, like temperate forests, their leaves show a continuous vertical profile. Also their gas exchange rates are not different from those of temperate forests except inasmuch as they continue to operate all year round. However, they differ from temperate forests by their broader range of life forms, the tendency of trees to be tied together with lianas, and their high species richness. Several lines of evidence suggest they are acting as carbon sinks, except when they are disturbed, although this may be a transient response to the general increase in CO2 concentrations. However, it is likely that they will decline if climatic warming and drying progresses, and they will then be carbon sources to the atmosphere. In the meantime, they perform an important range of environmental services, and their protection will probably be included in whatever international agreement succeeds the Kyoto Protocol.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Achard F, Eva HD, Stibig HJ, Mayaux M, Gallego J, Richards T, Malingreau J-P (2002) Determination of the deforestation rate of the world’s humid tropical forests. Science 297:999–1002

    Article  CAS  PubMed  Google Scholar 

  • Araújo AC, Nobre AD, Manzi AO, Valentini R, Gash JHC, Kabat P (2002) Dual long-term tower study of carbon dioxide fluxes for a central Amazonian rainforest: the Manaus LBA site. J Geophys Res 107(D20):8090

    Article  Google Scholar 

  • Asshoff R, Zotz G, Körner C (2006) Growth and phenology of mature temperate forest trees in elevated CO2. Glob Change Biol 12:848–861

    Article  Google Scholar 

  • Baker TR, Phillips OL, Malhi Y, Almeida S, Arroyo L, Di Fiore A, Erwin T, Higuchi N, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Monteagudo A, Neill DA, Vargas PN, Pitman NC, Silva JN, Martínez RV (2004) Increasing biomass in Amazonian forest plots. Philos Trans R Meteorol Soc 359:353–365

    Article  Google Scholar 

  • Bassow SL, Bazzaz FA (1998) How environmental conditions affect leaf-level photosynthesis in four deciduous tree species. Ecology 79:2660–2675

    Google Scholar 

  • Bazzaz FA, Pickett STA (1980) Physiological ecology of tropical succession: a comparative review. Annu Rev Ecol System 11:237–310

    Google Scholar 

  • Benítez-Malvido J, Martínez-Ramos M (2003) Influence of edge exposure on tree seedling species recruitment in tropical rain forest fragments. Biotropica 35:530–541

    Google Scholar 

  • Bowman DMJS (2000) Australian Rainforests: Islands of Green in a Land of Fire. Cambridge University Press, Cambridge

    Google Scholar 

  • Brown ND, Whitmore TC (1992) Do dipterocarp seedlings really partition tropical rain forest gaps? Philos Trans R Soc B 335:369–378

    Article  Google Scholar 

  • Brown S, Lugo AE (1990) Tropical secondary forests. J Trop Ecol 6:1–32

    Article  Google Scholar 

  • Cai Z (2007) Lianas and trees in tropical forests in south China. PhD Thesis, Wageningen University, The Netherlands

    Google Scholar 

  • Carswell FE, Grace J, Lucas ME, Jarvis PG (2000a) Interaction of nutrient limitation and elevated CO2 concentration on carbon assimilation of a tropical tree seedling (Cedrela odorata). Tree Physiol 20:977–986

    CAS  PubMed  Google Scholar 

  • Carswell FE, Meir P, Wandelli EV, Bonates LCM, Kruijt B, Barbosa EM, Nobre AD, Grace J, Jarvis PG (2000b) Photosynthetic capacity in a central Amazonian rain forest. Tree Physiol 20:179–186

    PubMed  Google Scholar 

  • Carswell FE, Costa AL, Palheta M, Malhi Y, Meir PW, Costa J de PR, Ruivo M de L, Costa JMN, Clement RJ, Grace J (2002) Seasonality in CO2 and H2O flux at an eastern Amazonian rain forest. J Geophys Res Atmos 107(D20):8076, doi:10.1029/2000JD000284

    Google Scholar 

  • Chambers JQ, Higuchi N, Schimel JP (1998) Ancient trees in Amazonia. Nature 391:135–136

    Article  CAS  Google Scholar 

  • Chazdon RL, Field CB (1987) Determination of photosynthetic capacity in 6 rain forest species. Oecologia 73:222–230

    Article  Google Scholar 

  • Clark DA, Piper SC, Keeling CD, Clark DB (2003) Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984–2000. Proc Natl Acad Sci USA 100:5852–5857

    Article  CAS  PubMed  Google Scholar 

  • Clark DB (1996) Abolishing virginity. J Trop Ecol 12:735–739

    Article  Google Scholar 

  • Coley PD, Kursar TA (1996) Anti-herbivore defenses of young tropical leaves: physiological constraints and ecological trade-offs. In: Mulkey SS, Chazdon RL, Smith AP (eds) Tropical forest plant ecophysiology. Chapman and Hall, New York, pp 305–336

    Google Scholar 

  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187

    Article  CAS  PubMed  Google Scholar 

  • Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V, Foley J, Friend AD, Kucharik C, Lomas MR, Ramankutty N, Sitch S, Smith B, White A, Young-Molling C (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob Change Biol 7:357–373

    Article  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  CAS  PubMed  Google Scholar 

  • Denslow JS (1980) Gap partitioning among tropical rainforest trees. Biotropica 12:47–55

    Article  Google Scholar 

  • Domingues TF, Berry JA, Martinelli LA, Ometto JPHB, Ehleringer JR (2005) Parameterization of canopy structure and leaf-level gas exchange for an eastern Amazonian tropical rain forest (Tapajós National Forest, Pará, Brazil). Earth Interactions 9(17):1–23

    Article  Google Scholar 

  • Domingues TF, Martinelli LA, Ehleringer JR (2007) Ecophysiological traits of plant functional groups in forest and pasture ecosystems from eastern Amazonia, Brazil. Plant Ecol 193:101–112

    Article  Google Scholar 

  • Ellsworth DS, Reich PB (1996) Photosynthesis and leaf nitrogen in five Amazonian tree species during early secondary succession. Ecology 77:581–594

    Article  Google Scholar 

  • Eriksson H, Eklundh L, Hall K, Lindroth A (2005) Estimating LAI in deciduous forest stands. Agric For Meteorol 129:27–28

    Article  Google Scholar 

  • Feeley KJ, Wright SJ, Nur Supardi MN, Kassim AR, Davies SJ (2007) Decelerating growth in tropical forest trees. Ecol Lett 10:461–469

    Article  PubMed  Google Scholar 

  • Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler K-G, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Climate 19:3337–3353

    Article  Google Scholar 

  • Gentry AH, Dodson C (1987) Contribution of non-trees to species richness of a tropical rain forest. Biotropica 19:149–156

    Article  Google Scholar 

  • Gomez-Pompa A, Salvadore J, Sosa V (1987) The ‘pet-kot’: a man-made tropical forest of the Maya. Interciencia 12:10–15

    Google Scholar 

  • Grace J, Lloyd J, McIntyre J, Miranda A, Meir P, Miranda H, Nobre C, Moncrieff J, Massheder J, Mahli Y, Wright I, Gash J (1995) Carbon dioxide uptake by an undisturbed tropical rain forest in South-West Amazonia 1992–1993. Science 270:778–780

    Article  CAS  Google Scholar 

  • Grace J, Nichol C, Disney M, Lewis P, Quaife T, Bowyer P (2007) Can we measure terrestrial photosynthesis from space directly, using spectral reflectance and fluorescence? Glob Change Biol 13:1484–1497

    Article  Google Scholar 

  • Granados J, Körner C (2002) In deep shade, elevated CO2 increases the vigour of tropical climbing plants. Glob Change Biol 8:1109–1117

    Article  Google Scholar 

  • Hallé F, Oldeman RAA, Tomlonson PB (1978) Tropical trees and forests. Springer, Berlin

    Google Scholar 

  • Holbrook NM, Putz FE (1996) From epiphyte to tree: differences in leaf structure and leaf water relations associated with the transition in growth form in eight species of hemiepiphytes. Plant Cell Environ 19:631–642

    Article  Google Scholar 

  • Hutyra LR, Munger JW, Saleska SR, Gottlieb EW, Daube BC, Dunn AL, Amaral DF, de Camargo PB, Wofsy SC (2007) Seasonal controls on the exchange of carbon and water in an Amazonian forest. J Geophys Res 112:G03008, doi: 10.1029/2006JG000365

    Google Scholar 

  • IPCC (2007) Fourth Assessment report (AR4): Working Group 1 Report “The Physical Science Basis”. Available at http://www.ipcc.ch/

  • Kapos V (1989) Effects of isolation on the water status of forest patches in the Brazilian Amazon. J Trop Ecol 5:173–185

    Article  Google Scholar 

  • Kattge J, Knorr W, Raddatz T, Wirth C (2009) Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Glob Change Biol (in press) doi: 10.1111/j.1365-2486.2008.01744.x

    Google Scholar 

  • Kira T (1978) Community architecture and organic matter dynamics in lowland tropical rain forests of South East Asia with special reference to Pasoh forest, West Malaysia. In: Tomlinson PB, Zimmermann MH (eds) Tropical trees as living systems. Cambridge University Press, Cambridge, pp 561–590

    Google Scholar 

  • Koike F, Syahbuddin (1993) Canopy structure of a tropical rain forest and the nature of an unstratified upper layer. Funct Ecol 7:230–235

    Article  Google Scholar 

  • Kruijt B, Lloyd J, Grace J, McIntyre J, Farquhar GD, Miranda AC, McCracken P (1996) Sources and sinks of CO2 in Rondonia tropical rainforest. In: Gash JHC, Nobre CA, Roberts JM, Victoria RL (eds) Amazonian deforestation and climate. Wiley, Chichester, pp 331–351

    Google Scholar 

  • Kruijt B, Elbers JA, von Randow C, Araújo AC, Oliveira PJ, Culf A, Manzi AO, Nobre AD, Kabat P, Moors EJ (2004) The robustness of eddy correlation fluxes for Amazon rain forest conditions. Ecol Appl 14:S101–S113

    Article  Google Scholar 

  • Kull O, Niinemets U (1998) Distribution of leaf photosynthetic properties in tree canopies: comparison of species with different shade tolerance. Funct Ecol 12:472–479

    Article  Google Scholar 

  • Laurance WF, Williamson B (2001) Positive feedbacks among forest fragmentation, drought and climate change in the Amazon. Conserv Biol 15:1529–1535

    Article  Google Scholar 

  • LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379

    Article  PubMed  Google Scholar 

  • Leigh EG Jr (1975) Structure and climate in tropical rain forest. Annu Rev Ecol System 6:67–86

    Article  Google Scholar 

  • Lloyd J, Farquhar GD (1996) The CO2 dependence of photosynthesis, plant growth responses to elevated atmospheric CO2 concentrations and their interaction with soil nutrient status. 1. General principles and forest ecosystems. Funct Ecol 10:4–32

    Google Scholar 

  • Lloyd J, Kruijt B, Hollinger DY, Grace J, Francey RJ, Wong SC, Kelliher FM, Miranda AC, Farquhar GD, Gash JHC, Vygodskaya NN, Wright IR, Miranda HS, Schulze ED (1996) Vegetation effects on the isotopic composition of atmospheric CO2 at local and regional scales: theoretical aspects and a comparison between rain forest in Amazonia and a boreal forest in Siberia. Aust J Plant Physiol 23:371–399

    Article  Google Scholar 

  • Londre RA, Schnitzer SA (2006) The distribution of lianas and their change in abundance in temperate forests over the past 45 years. Ecology 87:2973–2978

    Article  PubMed  Google Scholar 

  • Luyssaert S, Inglima I, Jung M, Richardson AD, Reichstein M, Papale D, Piao SL, Schulze ED, Wingate L, Matteucci G, Aragao L, Aubinet M, Beers C, Bernhofer C, Black KG, Bonal D, Bonnefond JM, Chambers J, Ciais P, Cook B, Davis KJ, Dolman AJ, Gielen B, Goulden M, Grace J, Granier A, Grelle A, Griffis T, Grünwald T, Guidolotti G, Hanson PJ, Harding R, Hollinger DY, Hutyra LR, Kolari P, Kruijt B, Kutsch W, Lagergren F, Laurila T, Law BE, Le Maire G, Lindroth A, Loustau D, Malhi Y, Mateus J, Migliavacca M, Misson L, Montagnani L, Moncrieff J, Moors E, Munger JW, Nikinmaa E, Ollinger SV, Pita G, Rebmann C, Roupsard O, Saigusa N, Sanz MJ, Seufert G, Sierra C, Smith ML, Tang J, Valentini R, Vesala T, Janssens IA (2007) CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob Change Biol 13:2509–2537

    Article  Google Scholar 

  • Malhi Y, Wright J (2004) Spatial patterns and recent trends in the climate of tropical rainforest regions. Philos Trans R Soc Lond Ser B:359:311–329

    Article  Google Scholar 

  • Malhi Y, Nobre AD, Grace J, Kruijt B, Pereira MGP, Culf A, Scott S (1998) Carbon dioxide transfer over a Central Amazonian rain forest. J Geophys Res Atmos 103:31593–31612

    Article  CAS  Google Scholar 

  • Malhi Y, Baldocchi DD, Jarvis PG (1999) The carbon balance of tropical, temperate and boreal forests. Plant Cell Environ 22:715–740

    Article  CAS  Google Scholar 

  • Mayle FE, Burbridge R, Killeen TJ (2007) Millennial-scale dynamics of Southern Amazonian rain forests. Nature 209:2291–2294

    Google Scholar 

  • McWilliam A-LC, Robert JM, Cabral OMR, Leitao MVBR, de Costa ACL, Maitelli GT, Zamparoni CAGP (1993) Leaf area index and above-ground biomass of terra firme rain forest and adjacent clearings in Amazonia. Funct Ecol 7:310–317

    Article  Google Scholar 

  • McWilliam A-LC, Cabral OMR, Gomes BM, Esteves JL, Roberts JM (1996) Forest and pasture leaf-gas exchange in south-west Amazonia. In: Gash JHC, Nobre CA, Roberts JM, Victoria RL (eds) Amazonian deforestation and climate. Wiley, Chichester, pp 265–285

    Google Scholar 

  • Meggers BJ (1994) Archeological evidence for the impact of mega-Niño events on Amazonia during the past two millennia. Climate Change 28:321–338

    Article  CAS  Google Scholar 

  • Meir P, Grace J, Miranda AC (2000) Photographic method to measure the vertical distribution of leaf area density in forests. Agric For Meteorol 102:105–111

    Article  Google Scholar 

  • Meir P, Kruijt B, Broadmeadow M, Barbosa E, Kull O, Carswell F, Nobre A, Jarvis PG (2002) Acclimation of photosynthetic capacity to irradiance in tree canopies in relation to leaf nitrogen concentration and leaf mass per unit area. Plant Cell Environ 25:343–357

    Article  Google Scholar 

  • Meir P, Levy PE, Grace J, Jarvis PG (2007) Photosynthetic parameters from two contrasting woody vegetation types in West Africa. Plant Ecol 192:277–287, doi: 10:1007/s11258-007-9320-y

    Google Scholar 

  • Miller SD, Goulden ML, Menton MC, Rocha HR, Freitas HC, Figueira AM, Sousa CAD (2004) Biometric and micrometeorological measurements of tropical forest carbon balance. Ecol Appl 14:S114–S126

    Article  Google Scholar 

  • Montgomery RA, Chazdon RL (2001) Forest structure, canopy architecture, and light transmittance in tropical wet forests. Ecology 82:2707–2718

    Article  Google Scholar 

  • Ometto J-PHB, Nobre AD, Rocha HR, Artaxo P, Martinelli LA (2005) Amazonia and the modern carbon cycle: lessons learned. Oecologia 143:483–500

    Article  PubMed  Google Scholar 

  • Phillips OL, Malhi Y, Higuchi N, Laurance WF, Nunez PV, Vasquez RM, Laurance SG, Ferreira LV, Stern M, Brown S, Grace J (1998) Changes in the carbon balance of tropical forests: evidence from long-term plots. Science 282:439–442

    Article  CAS  PubMed  Google Scholar 

  • Phillips OL, Martinez RV, Arroyo L, Baker TR, Killeen T, Lewis SL, Malhi Y, Monteagudo Mendoza A, Neill D, Núñez Vargas P, Alexiades M, Cerón C, Di Fiore A, Erwin T, Jardim A, Palacios W, Saldias M, Vinceti B (2002) Increasing dominance of large lianas in Amazonian forests. Nature 418:770–774

    Article  CAS  PubMed  Google Scholar 

  • Phillips OL, Baker TR, Arroyo L, Higuchi N, Killeen TJ, Laurance WF, Lewis SL, Lloyd J, Malhi Y, Monteagudo A, Neill DA, Vargas PN, Silva JNM, Terborgh J, Martinez RV, Alexiades M, Almeida S, Brown S, Chave J, Comiskey JA, Czimczik CI, Di Fiore A, Erwin T, Kuebler C, Laurance SG, Nascimento HEM, Olivier J, Palacios W, Patino S, Pitman NCA, Quesada CA, Salidas M, Lezama AT, Vinceti B (2004) Pattern and process in Amazon tree turnover, 1976–2001. Philos Trans R Soc London Ser B:359:381–407

    Article  CAS  Google Scholar 

  • Raftoyannis Y, Kalliope R (2002) Physiological responses of beech and sessile oak in a natural mixed stand during a dry summer Ann Bot 89:723–730

    Article  PubMed  Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS, Uhl C (1994) Photosynthesis–nitrogen relations in Amazonian tree species. I. Patterns among species and communities. Oecologia 97:62–72

    Article  Google Scholar 

  • Reich PB, Ellsworth DS, Uhl C (1995) Leaf carbon and nutrient assimilation and conservation in species of differing successional status in an oligotrophic Amazon forest. Funct Ecol 9:65–76

    Article  Google Scholar 

  • Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Violin JC, Bowman WD (1999) Generality of leaf trait relationships: a test across six biomes. Ecology 80:1955–1969

    Google Scholar 

  • Reich PB, Uhl C, Walters MB, Prugh L, Ellsworth DS (2004) Leaf demography and phenology in Amazonian rain forest: a census of 40,000 leaves of 23 tree species. Ecol Monogr 74:3–23

    Article  Google Scholar 

  • Restom TG, Nepstad DC (2004) Seedling growth dynamics of a deeply rooting liana in a secondary forest in Eastern Amazonia. For Ecol Manag 190:109–118

    Article  Google Scholar 

  • Rice AH, Pyle EH, Saleska SR, Hutyra L, Carmargo PB, Portilho K, Marques DF, Wofsy SF (2004) Carbon balance and vegetation dynamics in an old-growth Amazonian forest. Ecol Appl 14:855–871

    Article  Google Scholar 

  • Richards PW (1952) The tropical rain forest. Cambridge University Press, Cambridge

    Google Scholar 

  • Riddoch I, Grace J, Fasehun FE, Riddoch B, Ladipo DO (1991) Photosynthesis and successional status of seedlings in a tropical semideciduous rain forest in Nigeria. J Ecol 79:491–503

    Article  Google Scholar 

  • Rödenbeck C, Houweling S, Gloor E, Heimann M (2003) CO2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric data. Atmos Chem Phys Disc 3:2575–2659

    Google Scholar 

  • Roy J, Saugier B, Mooney HA (2001) Terrestrial global productivity. Academic, San Diego

    Google Scholar 

  • Saleska SR, Miller SD, Matross DM, Goulden ML, Wofsy SC, da Rocha HR, de Camargo PB, Crill P, Daube BC, de Freitas HC, Hutyra L, Keller M, Kirchhoff V, Menton M, Munger JW, Pyle HE, Rice AH, Silva H (2003) Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses. Science 302:1554–1557

    Article  CAS  PubMed  Google Scholar 

  • Schimper AFW (1898) Pflanzengeographie auf Physiologischer Grundlage, 2nd edn. Fischer, Jena

    Google Scholar 

  • Schnitzer SA (2005) A mechanistic explanation for global patterns of liana abundance and distribution. Am Nat 166:262–276

    Article  PubMed  Google Scholar 

  • Schulze E-D, Kelliher FM, Körner C, Lloyd J, Leuning R (1994) Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate and plant nitrogen nutrition: a global scaling exercise. Annu Rev Ecol Syst 25:629–660

    Article  Google Scholar 

  • Sierra CA, Harmon ME, Moreno FH, Orrego SA, del Valle JI (2007) Spatial and temporal variability of net ecosystem production in a tropical forest: testing the hypothesis of a significant carbon sink. Glob Change Biol 13:838–853

    Google Scholar 

  • Stephens BB, Gurney KR, Tans PP, Sweeney C, Peters W, Bruhwiler L, Ciais P, Ramonet M, Bousquet P, Nakazawa T, Aoki S, Machida T, Inoue G, Vinnichenko N, Lloyd J, Jordan A, Heimann M, Shibistova O, Langenfelds RL, Steele LP, Francey RJ, Denning AS (2007) Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science 316:1732–1735, doi: 10.1126/science.1137004

    Article  CAS  PubMed  Google Scholar 

  • Swaine MD, Grace J (2007) Lianas may be favoured by low rainfall: evidence from Ghana. Plant Ecol 192:271–276, doi: 10.1007/s11258-007-9319-4

    Article  Google Scholar 

  • Taylor JA, Lloyd J (1992) Sources and sinks of atmospheric CO2. Aust J Bot 40:407–418

    Article  CAS  Google Scholar 

  • Ter Steege H, Pitman NCA, Phillips OL, Chave J, Sabatier D, Duque A, Molino J-F, Prevost M-F, Spichiger R, Castellanos C, von Hildebrand P, Vasquez R (2006) Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443:444–447

    Article  CAS  PubMed  Google Scholar 

  • Terborgh J (1985) The vertical component of plant species diversity in temperate and tropical forests. Am Nat 126:760–776

    Article  Google Scholar 

  • Tian HQ, Melillo JM, Kicklighter DW, McGuire DA, Helfrich JVK III, Moore B III, Vörösmarty CJ (1998) Effect of interannual climate variability on carbon storage in Amazonian ecosystems. Nature 396:664–667

    Article  CAS  Google Scholar 

  • Trumbore S (2006) Carbon respired by terrestrial ecosystems – recent progress and challenges. Glob Change Biol 12:141–153

    Article  Google Scholar 

  • Von Humbolt FHA (1808) Ansichten der Natur mit wissenschaftlichen Erläuterungen. Stuttgart and Augsburg

    Google Scholar 

  • Werth D, Avissar R (2002) The local and global effects of Amazon deforestation. J Geophys Res – Atmos 107 (D20): Art. No. 8087, doi: 10.1029/2001JD000717, 2002

    Google Scholar 

  • Whitmore TC (1998) An introduction to tropical rain forests, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Wong SC, Cowan IR, Farquhar GD (1979) Stomatal conductance correlates with photosynthetic capacity. Nature 282:424–426

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin FS, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M-L, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas E, Villar R (2004). The worldwide leaf economics spectrum. Nature 428:821–827

    Article  CAS  PubMed  Google Scholar 

  • Xiao XM, Hagen S, Zhang QY, Keller M, Moore B (2006) Detecting leaf phenology of seasonally moist tropical forests in South America with multi-temporal MODIS images. Remote Sensing Environ 103:465–473

    Article  Google Scholar 

  • Zotz G, Cueni N, Körner C (2006) In situ growth stimulation of a temperate zone liana (Hedera helix) in elevated CO2. Funct Ecol 20:763–769

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Grace .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grace, J., Meir, P. (2009). Tropical Rain Forests as Old-Growth Forests. In: Wirth, C., Gleixner, G., Heimann, M. (eds) Old-Growth Forests. Ecological Studies, vol 207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92706-8_17

Download citation

Publish with us

Policies and ethics