Skip to main content

Connection Matrices for MSOL-Definable Structural Invariants

  • Conference paper
Logic and Its Applications (ICLA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5378))

Included in the following conference series:

Abstract

Connection matrices of graph parameters were first introduced by M. Freedman, L. Lovász and A. Schrijver (2007) to study the question which graph parameters can be represented as counting functions of weighted homomorphisms. The rows and columns of a connection matrix \(M(f,\Box)\) of a graph parameter f and a binary operation \(\Box\) are indexed by all finite (labeled) graphs Gi and the entry at (Gi,Gj) is given by the value of \(f(Gi \Box Gj )\). Connection matrices turned out to be a very powerful tool for studying graph parameters in general.

B. Godlin, T. Kotek and J.A. Makowsky (2008) noticed that connection matrices can be defined for general relational structures and binary operations between them, and for general structural parameters. They proved that for structural parameters f definable in Monadic Second Order Logic, (MSOL) and binary operations compatible with MSOL, the connection matrix \(M(f,\Box)\) has always finite rank. In this talk we discuss several applications of this Finite Rank Theorem, and outline ideas for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arratia, R., Bollobás, B., Sorkin, G.B.: The interlace polynomial of a graph. Journal of Combinatorial Theory, Series B 92, 199–233 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Courcelle, B., Makowsky, J.A., Rotics, U.: On the fixed parameter complexity of graph enumeration problems definable in monadic second order logic. Discrete Applied Mathematics 108(1-2), 23–52 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Courcelle, B., Olariu, S.: Upper bounds to the clique–width of graphs. Discrete Applied Mathematics 101, 77–114 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Courcelle, B.: A multivariate interlace polynomial (preprint) (December 2006)

    Google Scholar 

  5. Diestel, R.: Graph Theory. Graduate Texts in Mathematics. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  6. de Rougemont, M.: Uniform definability on finite structures with successor. In: SIGACT 1984, pp. 409–417 (1984)

    Google Scholar 

  7. Edwards, K.: The harmonious chromatic number and the achromatic number. In: Bailey, R.A. (ed.) Survey in Combinatorics. London Math. Soc. Lecture Note Ser., vol. 241, pp. 13–47. Cambridge Univ. Press, Cambridge (1997)

    Google Scholar 

  8. Edwards, K., McDiarmid, C.: The complexity of harmonious colouring for trees. Discrete Appl. Math. 57(2-3), 133–144 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Freedman, M., Lovász, L., Schrijver, A.: Reflection positivity, rank connectivity, and homomorphisms of graphs. Journal of AMS 20, 37–51 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Godlin, B., Kotek, T., Makowsky, J.A.: Evaluation of graph polynomials. In: International Symposium on Theoretical Programming. LNCS. Springer, Heidelberg (2008)

    Google Scholar 

  11. Goodall, A.J.: Some new evaluations of the Tutte polynomial. Journal of Combinatorial Theory, Series B 96, 207–224 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goodall, A.J.: Parity, eulerian subgraphs and the Tutte polynomial. Journal of Combinatorial Theory, Series B 98(3), 599–628 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Godsil, C., Royle, G.: Algebraic Graph Theory. Graduate Texts in Mathematics. Springer, Heidelberg (2001)

    Book  MATH  Google Scholar 

  14. Harary, F., Hedetniemi, S., Prins, G.: An interpolation theorem for graphical homomorphisms. Portugal. Math. 26, 453–462 (1967)

    MathSciNet  MATH  Google Scholar 

  15. Hopcroft, J.E., Krishnamoorthy, M.S.: On the harmonious coloring of graphs. SIAM J. Algebraic Discrete Methods 4, 306–311 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hughes, F., MacGillivray, G.: The achromatic number of graphs: a survey and some new results. Bull. Inst. Combin. Appl. 19, 27–56 (1997)

    MathSciNet  MATH  Google Scholar 

  17. Kotek, T., Makowsky, J.A., Zilber, B.: On counting generalized colorings. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 339–353. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Linial, M.: Hard enumeration problems in geometry and combinatorics. SIAM Journal of Algebraic and Discrete Methods 7, 331–335 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Linial, N., Matousek, J., Sheffet, O., Tardos, G.: Graph coloring with no large monochromatic components. arXiv:math/0703362 (2007)

    Google Scholar 

  20. Lovász, L.: Connection matrics. In: Grimmet, G., McDiarmid, C. (eds.) Combinatorics, Complexity and Chance, A Tribute to Dominic Welsh, pp. 179–190. Oxford University Press, Oxford (2007)

    Chapter  Google Scholar 

  21. Makowsky, J.A.: Algorithmic uses of the Feferman-Vaught theorem. Annals of Pure and Applied Logic 126(1-3), 159–213 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Makowsky, J.A.: Colored Tutte polynomials and Kauffman brackets on graphs of bounded tree width. Disc. Appl. Math. 145(2), 276–290 (2005)

    Article  MATH  Google Scholar 

  23. Makowsky, J.A.: From a zoo to a zoology: Towards a general theory of graph polynomials. Theory of Computing Systems (July 2007), http://www.dx.doi.org/10.1017/s00224-007-9022-9

  24. Moran, S., Snir, S.: Efficient approximation of convex recolorings. Journal of Computer and System Sciences 73(7), 1078–1089 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Makowsky, J.A., Zilber, B.: Polynomial invariants of graphs and totally categorical theories. MODNET Preprint No. 21 (2006), http://www.logique.jussieu.fr/modnet/Publications/Preprint%20server

  26. Oum, S.: Approximating rank-width and clique-width quickly. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 49–58. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  27. Schrijver, A.: Polynomial and tensor invariants and combinatorial parameters. Amsterdam (preprint, 2008)

    Google Scholar 

  28. Szegedy, B.: Edge coloring models and reflection positivity, arXiv: math.CO/0505035 (2007)

    Google Scholar 

  29. Welsh, D.J.A.: Complexity: Knots, Colourings and Counting. London Mathematical Society Lecture Notes Series, vol. 186. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Makowsky, J. (2008). Connection Matrices for MSOL-Definable Structural Invariants. In: Ramanujam, R., Sarukkai, S. (eds) Logic and Its Applications. ICLA 2009. Lecture Notes in Computer Science(), vol 5378. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92701-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92701-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92700-6

  • Online ISBN: 978-3-540-92701-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics