Skip to main content

Fixed Point Theorems on Partial Randomness

  • Conference paper
Logical Foundations of Computer Science (LFCS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5407))

Included in the following conference series:

Abstract

In our former work [K. Tadaki, Local Proceedings of CiE 2008, pp. 425–434, 2008], we developed a statistical mechanical interpretation of algorithmic information theory by introducing the notion of thermodynamic quantities, such as free energy F(T), energy E(T), and statistical mechanical entropy S(T), into the theory. We then discovered that, in the interpretation, the temperature T equals to the partial randomness of the values of all these thermodynamic quantities, where the notion of partial randomness is a stronger representation of the compression rate by program-size complexity. Furthermore, we showed that this situation holds for the temperature itself as a thermodynamic quantity. Namely, the computability of the value of partition function Z(T) gives a sufficient condition for T ∈ (0,1) to be a fixed point on partial randomness. In this paper, we show that the computability of each of all the thermodynamic quantities above gives the sufficient condition also. Moreover, we show that the computability of F(T) gives completely different fixed points from the computability of Z(T).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Callen, H.B.: Thermodynamics and an Introduction to Thermostatistics, 2nd edn. John Wiley & Sons, Inc., Singapore (1985)

    MATH  Google Scholar 

  2. Calude, C.S., Staiger, L., Terwijn, S.A.: On partial randomness. Ann. Pure Appl. Logic 138, 20–30 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Calude, C.S., Stay, M.A.: Natural halting probabilities, partial randomness, and zeta functions. Inform. and Comput. 204, 1718–1739 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chaitin, G.J.: A theory of program size formally identical to information theory. J. Assoc. Comput. Mach. 22, 329–340 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chaitin, G.J.: Algorithmic Information Theory. Cambridge University Press, Cambridge (1987)

    Book  MATH  Google Scholar 

  6. Downey, R.G., Hirschfeldt, D.R.: Algorithmic randomness and complexity. Springer, Heidelberg (to appear)

    Google Scholar 

  7. Kjos-Hanssen, B.: Infinite subsets of random sets of integers. Math. Res. Lett. (to appear)

    Google Scholar 

  8. Kjos-Hanssen, B.: Private communication (September 2008)

    Google Scholar 

  9. Reimann, J., Stephan, F.: On hierarchies of randomness tests. In: Proceedings of the 9th Asian Logic Conference. World Scientific Publishing, Novosibirsk (2005)

    Google Scholar 

  10. Reimann, J.: Effectively closed sets of measures and randomness. Ann. Pure Appl. Logic (to appear)

    Google Scholar 

  11. Ruelle, D.: Statistical Mechanics, Rigorous Results, 3rd edn. Imperial College Press and World Scientific Publishing Co. Pte. Ltd., Singapore (1999)

    Book  MATH  Google Scholar 

  12. Tadaki, K.: Algorithmic information theory and fractal sets. In: Proceedings of 1999 Workshop on Information-Based Induction Sciences (IBIS 1999), Syuzenji, Shizuoka, Japan, August 26-27, 1999, pp. 105–110 (1999) (in Japanese)

    Google Scholar 

  13. Tadaki, K.: A generalization of Chaitin’s halting probability Ω and halting self-similar sets. Hokkaido Math. J. 31, 219–253 (2002); Electronic Version, http://arxiv.org/abs/nlin/0212001v1

    Article  MathSciNet  MATH  Google Scholar 

  14. Tadaki, K.: A statistical mechanical interpretation of algorithmic information theory. In: Local Proceedings of Computability in Europe 2008 (CiE 2008), University of Athens, Greece, June 15-20, 2008, pp. 425–434 (2008); Extended and Electronic Version, http://arxiv.org/abs/0801.4194v1

  15. Toda, M., Kubo, R., Saitô, N.: Statistical Physics I., 2nd edn. Equilibrium Statistical Mechanics. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  16. Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tadaki, K. (2008). Fixed Point Theorems on Partial Randomness. In: Artemov, S., Nerode, A. (eds) Logical Foundations of Computer Science. LFCS 2009. Lecture Notes in Computer Science, vol 5407. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92687-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92687-0_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92686-3

  • Online ISBN: 978-3-540-92687-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics