Skip to main content

Topological Forcing Semantics with Settling

  • Conference paper
Logical Foundations of Computer Science (LFCS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5407))

Included in the following conference series:

Abstract

Just as forcing, or Boolean-valued models, produce a model of ZF (when the meta-theory is, or the ground model satisfies, ZF), so do Heyting-valued models satisfy IZF, which stands for Intuitionistic ZF, the standard constructive re-working of the ZF axioms. In this paper, a variant model is introduced (with truth values the Heyting algebra of open sets of a topological space), along with a correspondingly revised forcing or satisfaction relation. Such a model is shown to satisfy only a fragment of IZF. Natural properties of the underlying topological space are shown to imply stronger closure properties of the model. (It is impossible, except in trivial cases, for Power Set to be satisfied.) This semantics generalizes the second model of [9], which is the current semantics for the special case of the underlying topological space being \({\mathbb R}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aczel, P.: The type theoretic interpretation of constructive set theory. In: MacIntyre, A., Pacholski, L., Paris, J. (eds.) Logic Colloquium 1977, pp. 55–66. North-Holland, Amsterdam (1978)

    Google Scholar 

  2. Aczel, P.: The type theoretic interpretation of constructive set theory: choice principles. In: Troelstra, A.S., van Dalen, D. (eds.) The L.E.J. Brouwer Centenary Symposium, pp. 1–40. North-Holland, Amsterdam (1982)

    Chapter  Google Scholar 

  3. Aczel, P.: The type theoretic interpretation of constructive set theory: inductive definitions. In: Marcus, R.B., et al. (eds.) Logic, Methodology and Philosophy of Science VII, pp. 17–49. North-Holland, Amsterdam (1986)

    Google Scholar 

  4. Aczel, P., Rathjen, M.: Notes on constructive set theory, Technical Report 40, 2000/2001. Mittag-Leffler Institute, Sweden (2001)

    Google Scholar 

  5. Fourman, M.P., Scott, D.S.: Sheaves and Logic. In: Fourman, M.P., Mulvey, C.J., Scott, D.S. (eds.) Applications of Sheaves. Lecture Notes in Mathematics, vol. 753, pp. 302–401. Springer, Heidelberg (1979)

    Chapter  Google Scholar 

  6. Grayson, R.J.: Heyting-valued models for intuitionistic set theory. In: Fourman, M.P., Mulvey, C.J., Scott, D.S. (eds.) Applications of Sheaves. Lecture Notes in Mathematics, vol. 753, pp. 402–414. Springer, Heidelberg (1979)

    Chapter  Google Scholar 

  7. Grayson, R.J.: Heyting-valued semantics. In: Lolli, G., Longo, G., Marcja, A. (eds.) Logic Colloquium 1982. Studies in Logic and the Foundations of Mathematics, vol. 112, pp. 181–208. North-Holland, Amsterdam (1984)

    Google Scholar 

  8. Lubarsky, R.: CZF and Second Order Arithmetic. Annals of Pure and Applied Logic 141, 29–34 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lubarsky, R., Rathjen, M.: On the constructive Dedekind reals. In: Artemov, S.N., Nerode, A. (eds.) LFCS 2007. LNCS, vol. 4514, pp. 349–362. Springer, Heidelberg (2007); Also Logic and Analysis, vol. 1, pp. 131–152 (2008)

    Chapter  Google Scholar 

  10. MacLane, S., Moerdijk, I.: Sheaves in Geometry and Logic. Springer, New York (1992)

    Book  Google Scholar 

  11. McCarty, D.: Realizability and recursive mathematics. Ph.D. thesis, Oxford University (1984), also Carnegie-Mellon University Technical Report CMU-CS-84-131

    Google Scholar 

  12. Mostowski, A.W.: Proofs of non-deducibility in intuitionistic functional calculus. JSL 13, 204–207 (1948)

    MathSciNet  MATH  Google Scholar 

  13. Scott, D.S.: Extending the topological interpretation to intuitionistic analysis I. Compos. Math. 20, 194–210 (1968)

    MathSciNet  MATH  Google Scholar 

  14. Scott, D.S.: Extending the topological interpretation to intuitionistic analysis II. In: Myhill, J., Kino, A., Vesley, R.E. (eds.) Intuitionism and Proof Theory, pp. 235–255. North-Holland, Amsterdam (1970)

    Google Scholar 

  15. Stone, M.H.: Topological representations of distributive lattices and Brouwerian logics. Casopis Pro Pestvovani Mathematiky a Fysiki Cast Matematicka 67, 1–25 (1937)

    Google Scholar 

  16. Tarski, A.: Der Aussagenkalkül and die Topologie. Fundam. Math. 31, 103–134 (1938)

    Google Scholar 

  17. Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics – An Introduction, vol. II. In: Studies in Logic and the Foundations of Mathematics, vol. 123. North-Holland, Amsterdam (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lubarsky, R.S. (2008). Topological Forcing Semantics with Settling. In: Artemov, S., Nerode, A. (eds) Logical Foundations of Computer Science. LFCS 2009. Lecture Notes in Computer Science, vol 5407. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92687-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92687-0_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92686-3

  • Online ISBN: 978-3-540-92687-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics