Skip to main content

The Killer Effect of Paramecium and Its Causative Agents

  • Chapter
  • First Online:
Endosymbionts in Paramecium

Part of the book series: Microbiology Monographs ((MICROMONO,volume 12))

Abstract

Frequently, nonrelated organisms form endocytobioses resulting in organisms with different characters compared with those of the individual partners alone. Endocytic bacteria of the genus Caedibacter in host ciliates of the genus Paramecium enable their host to kill sensitive paramecia. These paramecia therefore are called “killers” and the phenomenon was named “killer trait” (Sonneborn in Proc. Am. Philos. Soc. 79:411–434, 1938). In their natural environment these endocytic bacteria enable their hosts to outcompete uninfected forms (Kusch et al. in Protist 153:47–58, 2002). Endocytobioses become more complex when the intracellular bacteria are infected with phages, such as in the three partner association Paramecium-Caedibacter-bacteriophage. Interaction of the different partners results in the formation of a proteinaceous intracellular structure called a “refractile body” (R-body) within the bacteria. Physiological tests demonstrated that R-bodies are a prerequisite for Caedibacter to confer the killer trait to their host, but they are not the toxin that kills sensitive paramecia (Preer et al. in Proc. Natl. Acad. Sci. USA 39:1228–1233, 1953). In this chapter we focus on the Caedibacter species, with additional brief remarks on other endocytic killer bacteria and on R-bodies produced by free-living bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Austin ML (1948a) The killing substance paramecin: activity of single particles. Am Nat 82:51–59

    Article  Google Scholar 

  • Austin ML (1948b) The killing action and rate of production of single particles of paramecin 51. Physiol Zool 21:69–86

    Google Scholar 

  • Beier CL, Horn M, Michel R, Schweikert M, Görtz H-D, Wagner M (2002) The genus Caedibacter comprises endosymbionts of Paramecium spp. related to the Rickettsiales (Alphaproteobacteria) and to Francisella tularensis (Gammaproteobacteria). Appl Environ Microbiol 68:6043–6050

    Article  Google Scholar 

  • Dilts JA (1977) Chromosomal and extrachromosomal deoxyribonucleic acid from four bacterial endosymbionts derived from stock 51 of Paramecium tetraurelia. J Bacteriol 129:888–894

    Google Scholar 

  • Dilts JA, Quackenbush RL (1986) A mutation in the R body-coding sequences destroys expression of the killer trait in P. tetraurelia. Science 232:641–643

    Article  Google Scholar 

  • Euzéby JP (1997) List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet. Int J Syst Bacteriol 47:590–592

    Article  Google Scholar 

  • Euzéby JP (2008) List of prokaryotic names with standing in nomenclature. http://www.bacterio.net. Accessed 15 Sep 2008

  • Favinger J, Stadtwald R, Gest H (1989) Rhodospirillum centenum, sp. nov., a thermotolerant cyst-forming anoxygenic photosynthetic bacterium. Antonie Van Leuwenhoek 55:291–296

    Article  Google Scholar 

  • Fokin SI, Görtz H-D (1993) Caedibacter macronucleorum sp. nov., a bacterium inabiting the macronucleus if Paramecium duboscqui. Arch Protistkd 143:319–324

    Google Scholar 

  • Fokin SI, Ossipov DV (1986) Pseudocaedibacter glomeratus n. sp.–a cytoplasmic symbiont of the ciliate Paramecium pentaurelia. Cytologia 28:1000–1004

    Google Scholar 

  • Fokin SI, Schweikert M, Görtz H-D, Fujishima M (2003) Bacterial endocytobionts of Ciliophora. Diversity and some interactions with the host. Eur J Protistol 39:475–480

    Article  Google Scholar 

  • Fusté MC, Simon-Pujol MD, Marques AM, Guinea J, Congregado F (1986) Isolation of free ­living bacterium containing R-bodies. J Gen Microbiol 132:2801–2805

    Google Scholar 

  • Görtz H-D (2002) Symbiotic associations between ciliates and Prokaryotes. In: The prokaryotes: an evolving electronic resource for the microbial community, 3rd edn. Springer, New York, http://141.150.157.117.8080/prokPUB/chaprender/jsp/showchap/jsp?chapnum=355

  • Görtz H-D, Schmidt HJ (2005) Family III. Holosporaceae fam. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 2, 2nd edn. Springer, New York, pp 146–149

    Google Scholar 

  • Görtz HD, Rosati G, Schweikert M, Schrallhammer M, Omura G, Suzaki T (2008) Implications of microbial symbionts on defense and competition of hosts-ciliates. In: White JF, Torres MS (ed) Defensive mutualism in microbial symbiosis. CRC, Boca Raton

    Google Scholar 

  • Hamilton LD, Gettner ME (1958) Fine structure of kappa in Paramecium aurelia. J Biophys Biochem Cytol 4:122–123

    Article  Google Scholar 

  • Harding JJ (1985) Nonenzymatic covalent posttranslational modification of proteins in vivo. Adv Protein Chem 37:247–334

    Article  Google Scholar 

  • Heruth DC, Pond FR, Dilts JA, Quackenbush RL (1994) Characterization of genetic determinants for R body synthesis and assembly in Caedibacter taeniospiralis 47 and 166. J Bacteriol 176:3559–3567

    Google Scholar 

  • Hernández-Romero D, Lucas-Elío P, López-Serrano D, Solano F, Sanchez-Amat A (2003) Marinomonas mediterranea is a lysogenic bacterium that synthesizes R-bodies. Microbiology 149:2679–2686

    Article  Google Scholar 

  • Hendrix R, Casjens S (1974) Protein fusion: a novel reaction in bacteriophage self assembly. Proc Natl Acad Sci U S A 71:1451–1455

    Article  Google Scholar 

  • Horn M, Fritsche TR, Gautom RK, Schleifer K-H, Wagner M (1999) Novel bacterial endosymbionts of Acanthamoeba spp. related to the Paramecium caudatum symbiont Caedibacter caryophilus. Environ Microbiol 1:357–367

    Article  Google Scholar 

  • Jeblick J, Kusch J (2005) Sequence transcription activity and evolutionary origin of the R-body coding plasmid pKAP298 from the intracellular parasitic bacterium Caedibacter taeniospiralis. J Mol Evol 60:164–173

    Article  Google Scholar 

  • Jurand A, Rudman BM, Preer JR Jr (1971) Prelethal effects of killing action by stock 7 of Paramecium aurelia. J Exp Zool 177:365–388

    Article  Google Scholar 

  • Jurand A, Preer JR Jr, Rudman BM (1978) Further investigations on the prelethal effects of the killing action of kappa-containing killer stocks of Paramecium aurelia. J Exp Zool 206:25–48

    Article  Google Scholar 

  • Kusch J, Görtz H-D (2006) Towards an understanding of the killer trait: Caedibacter endocytobionts in Paramecium. Progr Cell Subcell Biol 41:61–57

    Article  Google Scholar 

  • Kusch J, Stremmel M, Breiner H-W, Adams V, Schweikert M, Schmidt HJ (2000) The toxic symbiont Caedibacter caryophila in the cytoplasm of Paramecium novaurelia. Microb Ecol 40:330–335

    Google Scholar 

  • Kusch J, Czubatinsky L, Wegmann S, Hübner M, Alter M, Albrecht P (2002) Competetive advantages of Caedibacter-infected Paramecia. Protist 153:47–58

    Article  Google Scholar 

  • Landis WG (1981) The ecology, role of the killer trait, and interactions of five species of Paramecium aurelia komplex inhabiting the littoral zone. Can J Zool 59:1734–1743

    Article  Google Scholar 

  • Landis WG (1987) Factors determining the frequency of the killer trait within populations of the Paramecium aurelia complex. Genetics 115:197–205

    Google Scholar 

  • Lalucat J (1989) Analysis of refractile (R) bodies. In: Mayer F (ed) Methods in microbiology: electron microscopy in microbiology, vol 20. Academic, San Diego, pp 79–90

    Google Scholar 

  • Lalucat J, Mayer F (1978) Spiral bodies–intracytoplasmic membraneous structures in a hydrogen oxydizing bacterium. Zeitschr Allg Mikrobiol 18:517–521

    Article  Google Scholar 

  • Linka N, Hurka H, Lang BF, Burger G, Winkler HH, Stamme C, Urbany C, Seil I, Kusch J, Neuhaus HE (2003) Phylogenetic relationships of non-mitochondrial nucleotide transport proteins in bacteria and eukaryotes. Gene 306:27–35

    Article  Google Scholar 

  • Müller JA (1962) Induced physiological and morphological changes in the B particle and R body from killer paramecia. J Protozool 9:26

    Google Scholar 

  • Müller JA (1963) Separation of kappa particles with infective activity from those with killing activity and identification of the infective particles in Paramecium aurelia. Exp Cell Res 30:492–508

    Article  Google Scholar 

  • Nobili R (1961) Alcune considerazioni sulla liberazione e sull’azione delle particelle kappa in individui amacronucleati di Paramecium aurelia, stock 51, syngen 4. Atti Soc Toscana Sci Nat Mem P V Ser B 1961:158–172

    Google Scholar 

  • Pilhofer M, Bauer AP, Schrallhammer M, Richter L, Ludwig W, Schleifer KH, Petroni G (2007) Characterization of bacterial operons consisting of two tubulins and a kinesin-like gene by the novel Two-Step Gene Walking method. Nucleic Acids Res 35(20):e135. doi:10.1093/nar/gkm836

    Article  Google Scholar 

  • Pond FR, Gibson I, Lalucat J, Quackenbush RL (1989) R-body-producing bacteria. Microbiol Rev 53:25–67

    Google Scholar 

  • Preer JR Jr (1950) Microscopically visible bodies in the cytoplasm of the “killer” strains of Paramecium aurelia. Genetics 35:344–362

    Google Scholar 

  • Preer JR Jr, Jurand A (1968) The relationship between virus-like particles and R-bodies of Paramecium aurelia. Genet Res 12:331–340

    Article  Google Scholar 

  • Preer JR Jr, Preer LB (1967) Virus-like bodies in killer paramecia. Proc Natl Acad Sci U S A 58:1774–1781

    Article  Google Scholar 

  • Preer JR Jr, Preer LB (1982) Revival of names of protozoan endosymbionts and proposal of Holospora caryophila nom. nov. Int J Syst Bacteriol 32:140–141

    Article  Google Scholar 

  • Preer JR Jr, Stark PS (1953) Cytolgical observations on the cytoplasmic factor “kappa” in Paramecium aurelia. Exp Cell Res 5:478–499

    Article  Google Scholar 

  • Preer JR Jr, Siegel RW, Stark PS (1953) The relationship between kappa and paramecin in Paramecium aurelia. Proc Natl Acad Sci U S A 39:1228–1233

    Article  Google Scholar 

  • Preer LB, Jurand A, Preer JR Jr, Rudman BM (1972) The classes of kappa in Paramecium aurelia. J Cell Sci 11:581–600

    Google Scholar 

  • Preer LB, Rudman BM, Preer JR Jr, Jurand J (1974) Induction of R bodies by ultraviolet light in killer paramecia. J Gen Microbiol 80:209–215

    Google Scholar 

  • Quackenbush RL (1977) Phylogenetic relationships of bacterial endosymbionts of Paramecium aurelia: polynucleotide sequence relationships of 51 kappa and its mutants. J Bacteriol 129:895–900

    Google Scholar 

  • Quackenbush RL (1978) Genetic relationships among bacterial endosymbionts of Paramecium aurelia. Deoxyribonucleotide sequence relationships among members of Caedibacter. J Gen Microbiol 108:181–187

    Google Scholar 

  • Quackenbush RL (1982) IN: Validation of the publication of new names and new combinations previously published outside the IJSB. List no. 8. Int J Syst Bacteriol 32:266–268

    Article  Google Scholar 

  • Quackenbush RL (1983) Plasmids from bacterial endosymbionts of humpkiller paramecia. Plasmid 9:298–306

    Article  Google Scholar 

  • Quackenbush RL, Burbach JA (1983) Cloning and expression of DNA sequences associated with the killer trait of Paramecium tetraurelia stock 47. Proc Natl Acad Sci U S A 80:250–254

    Article  Google Scholar 

  • Quackenbush RL, Cox BJ, Kanabrocki JA (1986a) Extrachromosomal elements of extrachromosomal elements of paramecia, and their extrachromosomal elements. In: Hollaender A et al. (ed), Extrachromosomal elements of lower eukaryotes. Plenum, New York, pp 265–278

    Google Scholar 

  • Quackenbush RL, Cox BJ, Kanabrocki JA (1986b) Extrachromosomal elements of extrachromosomal elements of Paramecium and their extrachromosomal elements. Basic Life Sci 40:265–278

    Google Scholar 

  • Quackenbush RL, Dilts JA, Cox BJ (1986) Transposonlike elements in Caedibacter taeniospiralis. J Bacteriol 166:349–352

    Google Scholar 

  • Schmidt HJ, Görtz H-D, Qackenbusch RL (1987) Caedibacter caryophila sp. nov., a killer symbiont inhabiting the macronucleus of Paramecium caudatum. Int J Syst Bacteriol 37:459–462

    Article  Google Scholar 

  • Schrallhammer M, Fokin SI, Schleifer KH, Petroni G (2006) Molecular characterization of the obligate endosymbiont “Caedibacter macronucleorum” Fokin and Görtz 1993 and of its host Paramecium duboscqui strain Ku4-8. J Eukaryot Microbiol 53:499–506

    Article  Google Scholar 

  • Schweikert M and Meyer B (2001) Characterization of intracellular bacteria in the freshwater dinoflagellate Peridinium cintum. Protoplasma 217:177–184

    Article  Google Scholar 

  • Skoblo II, Borchsenius ON, Lebedeva NA, Ossipov DV (1985) A new species of symbiotic ­bacteria of Paramecium bursaria, Ciliophora, Protozoa. Cytologia 27:1292–1297

    Google Scholar 

  • Smith JE (1961) Purification of kappa particles of Paramecium aurelia, stock 51. Am Zool 1:390

    Google Scholar 

  • Sonneborn TM (1938) Mating types in Paramecium aurelia: diverse conditions for mating in ­different stocks; occurrence, number and interrelations of the types. Proc Am Philos Soc 79:411–434

    Google Scholar 

  • Sonneborn TM (1943) Gene and cytoplasm. I. The determination and inheritance of the killer character in variety 4 of Paramecium aurelia. Proc Natl Acad Sci U S A 29:329–338

    Article  Google Scholar 

  • Sonneborn TM (1959) Kappa and related particles in Paramecium. Adv Virus Res 6:229–356

    Article  Google Scholar 

  • Sonneborn TM (1965) The metagon: RNA and cytoplasmic inheritance. Am Nat 99:279–307

    Article  Google Scholar 

  • Sonneborn TM, Gibson I, Schneller MV (1964) Killer particles and metagons of Paramecium grown in Didinium. Science 144:567–568

    Article  Google Scholar 

  • Springer N, Ludwig W, Amann R, Schmidt HJ, Görtz H-D Schleifer KH (1993) Occurrence of fragmented 16S rRNA in an obligate bacterial endosymbiont of Paramecium caudatum. Proc Natl Acad Sci U S A 90:9892–9895

    Article  Google Scholar 

  • Wells B, Horne RW (1983) The ultrastructure of Pseudomonas avenae II. intracellular refractile (R-body) structure. Micron Microsc Acta 14:329–344

    Article  Google Scholar 

  • Willems A, Busse J, Goor M, Pot B, Falsen E, Jantzen E, Hoste B, Gillis M, Kersters K, Auling G, De Ley J (1989) Hydrogenophaga, a new genus of hydrogen-oxidising bacteria that includes Hydrogenophaga flava comb. nov. (formerly Pseudomonas flava), Hydrogenophaga palleronii (formerly Pseudomonas palleronii), Hydrogenophaga pseudoflava (formerly Pseudomonas pseudoflava and “Pseudomonas carboxydoflava”), and Hydrogenophaga taeniospiralis (­formerly Pseudomonas taeniospiralis). Int J Syst Bacteriol 39:319–333

    Article  Google Scholar 

  • Willems A, Goor M, Thielemans S, Gillis M, Kersters K, De Ley J (1992) Transfer of several phytopathogenic Pseudomonas species to Acidovorax avenae subsp. avenae subsp. nov., comb. nov., Acidovorax avenae subsp. citrulli, Acidovorax avenae subsp. cattleyae, and Acidovorax konjaci. Int J Syst Bacteriol 42:107–119

    Article  Google Scholar 

  • Williams J (1971) The growth in vitro of killer particles from Paramecium aurelia and the axenic culture of this protozoan. J Gen Microbiol 68:253–262

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schrallhammer, M., Schweikert, M. (2009). The Killer Effect of Paramecium and Its Causative Agents. In: Fujishima, M. (eds) Endosymbionts in Paramecium. Microbiology Monographs, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92677-1_9

Download citation

Publish with us

Policies and ethics