Skip to main content

Metabolic Control Between the Symbiotic Chlorella and the Host Paramecium

  • Chapter
  • First Online:
Endosymbionts in Paramecium

Part of the book series: Microbiology Monographs ((MICROMONO,volume 12))

Abstract

Metabolic control, including the transfer of materials between a host and a symbiont, is important for understanding symbiotic relationships. However, sugars, mainly maltose, are the only confirmed class of material transferred from symbionts to Paramecium bursaria. An axenic Japanese Chlorella symbiont, which had been thought hard to isolate and maintain, was found to irreversibly adapt to its symbiotic milieu. Analysis of its features, such as the unique availability of nitrogenous compounds (e.g., amino acids) and its uncommon stimulation of carbon fixation by the host extract, revealed that three constitutional amino acid transport systems that can be controlled by Ca2+ and sugar are present, and that the carbon fixation ability of the symbiont depends on the extracellular cation concentration. These novel features of the Japanese symbiont imply metabolic control between the host and the symbiont.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albers D, Reisser W, Wiessner W (1982) Studies on the nitrogen supply of endosymbiotic Chlorellae in green Paramecium bursaria. Plant Sci Lett 25:85–90

    Article  CAS  Google Scholar 

  • BD Technical Center (2003) Typical analysis – BactoTM casamino acids. http://www.bd.com/ds/technicalCenter/typicalAnalysis/typ-casamino_acids.pdf

  • Beardall J (1981) CO2 accumulation by Chlorella saccharophila (Chlorophyceae) at low external pH: evidence for active transport of inorganic carbon at the chloroplast envelope. J Phycol 17:371–375

    Article  CAS  Google Scholar 

  • Beardall J, Raven JA (1981) Transport of inorganic carbon and the ‘CO2 concentrating mechanism’ in Chlorella emersonii (Chlorophyceae). J Phycol 17:134–141

    Article  CAS  Google Scholar 

  • Berkowitz GA, Wu W (1993) Magnesium, potassium flux and photosynthesis. Magnes Res 6:257–265

    PubMed  CAS  Google Scholar 

  • Brown JA, Nielsen PJ (1974) Transfer of photosynthetically produced carbohydrate from endosymbiotic Chlorella to Paramecium bursaria. J Protozool 21:569–570

    PubMed  CAS  Google Scholar 

  • Bush DR (1993) Proton-coupled sugar and amino acid transporters in plants. Annu Rev Plant Physiol Plant Mol Biol 44:513–542

    Article  CAS  Google Scholar 

  • Cameron LE, Lejohn HB (1972) On the involvement of calcium in amino acid transport and growth of the fungus Achlya. J Biol Chem 247:4729–4739

    PubMed  CAS  Google Scholar 

  • Camoni L, Marra M, Garufi A, Visconti S, Aducci P (2006) The maize root plasma membrane H+-ATPase is regulated by a sugar-induced transduction pathway. Plant Cell Physiol 47:743–747

    Article  PubMed  CAS  Google Scholar 

  • Cho BH, Komor E (1983) Mechanism of proline uptake by Chlorella vulgaris. Biochim Biophys Acta 735:361–366

    Article  CAS  Google Scholar 

  • Cho BH, Komor E (1985) The amino acid transport systems of the autotrophically grown green alga Chlorella. Biochim Biophys Acta 821:384–392

    Article  CAS  Google Scholar 

  • Cho BH, Sauer N, Komor E, Tanner W (1981) Glucose induces two amino acid transport systems in Chlorella. Pro Natl Acad Sci U S A 78:3591–3594

    Article  CAS  Google Scholar 

  • Cook CB (1983) Metabolic interchange in algae-invertebrate symbioses. Int Rev Cytol (Suppl 14):177–210

    Google Scholar 

  • Gates RD, Hoegh-Guldberg O, McFall-Ngai MJ, Bil’ KY, Muscatine L (1995) Free amino acids exhibit anthozoan “host factor” activity: they induce the release of photosynthate from symbiotic dinoflagellates in vitro. Proc Natl. Acad Sci U S A 92:7430–7434

    Article  PubMed  CAS  Google Scholar 

  • Gehl KA, Colman B, Sposato LM (1990) Mecanism of inorganic carbon uptake in Chlorella soccharophila: the lake of involvement of carbonic anhydrase. J Exp Bot 41:1385–1391

    Article  CAS  Google Scholar 

  • Grant AJ, Rémond M, People J, Hinde R (1997) Effects of host-tissue homogenate of the scleractinian coral Plesiastrea versipora on glycerol metabolism in isolated symbiotic dinoflagellates. Mar Biol 128:665–670

    Article  CAS  Google Scholar 

  • Grant AJ, Rémond M, Hinde R (1998) Low molecular-weight factor from Plesiastrea versipora (Scleractinia) that modifies release and glycerol metabolism of isolated symbiotic algae. Mar Biol 130:553–557

    Article  CAS  Google Scholar 

  • Grant AJ, Rémond M, Withers KJT, Hinde R (2001) Inhibition of algal photosynthesis by a symbiotic coral. Hydrobiologia 461:63–69

    Article  Google Scholar 

  • Grenson M, Hou C, Crabeel M (1970) Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. IV. Evidence for a general amino acid permease. J Bacteriol 103:770–777

    CAS  Google Scholar 

  • Harrington HM, Berry SL, Henke RR (1981) Amino acid transport into cultured tobacco cells. II. Effect of calcium. Plant Physiol 67:379–384

    Article  PubMed  CAS  Google Scholar 

  • Hinde R (1988) Factors produced by symbiotic marine invertebrates which affect translocation between the symbionts. In: Scannerini S, Smith D, Bonfante-Fasolo P, Gianinazzi-Pearson V (eds) Cell to cell signals in plant, animal and microbial symbiosis. Springer, Berlin, pp 311–324

    Google Scholar 

  • Ichimura T (1971) Sexual cell division and conjugation-papilla formation in sexual reproduction of Closterium strigosum. In: Proceedings of the Seventh International Seaweed Symposium. University of Tokyo Press, Tokyo, pp 208–214

    Google Scholar 

  • Ishikura M, Adachi K, Maruyama T (1999) Zooxanthellae release glucose in the tissue of a giant clam, Tridacna crocea. Mar Biol 133:665–673

    Article  CAS  Google Scholar 

  • Ishijima S, Ohnishi M (2002) Regulation of enzyme activities by free Mg2+ concentration. Regulation of stromal fructose-1,6-bisphosphatase and ribulose 1,5-bisphosphate carboxylase activities. J Appl Glycosci 49:199–203

    CAS  Google Scholar 

  • Kamako SI, Imamura N (2006) Effect of Japanese Paramecium bursaria extract on photosynthetic carbon fixation of symbiotic algae. J Eukaryot Microbiol 5:136–141

    Article  Google Scholar 

  • Kamako SI, Hoshina R, Ueno S, Imamura N (2005) Establishment of axenic endosymbiotic strains of Japanese Paramecium bursaria and their utilization of carbohydrate and nitrogen compounds. Eur J Protistol 41:193–202

    Article  Google Scholar 

  • Kato Y, Imamura N (2008a) Effect of calcium ion on uptake of amino acids by symbiotic Chlorella F36-ZK isolated from Japanese Paramecium bursaria. Plant Sci 174:88–96

    Article  CAS  Google Scholar 

  • Kato Y, Imamura N (2008b) Effect of sugars on amino acid transport by symbiotic Chlorella. Plant Physiol Biochem 46:911–917

    Article  CAS  Google Scholar 

  • Kato Y, Imamura N (2009) Amino acid transport systems of Japanese Paramecium symbiont F36-ZK. Symbiosis

    Google Scholar 

  • Kato Y, Ueno S, Imamura N (2006) Studies on the nitrogen utilization of endosymbiotic algae isolated from Japanese Paramecium bursaria. Plant Sci 170:481–486

    Article  CAS  Google Scholar 

  • Kessler E, Huss VAR (1990) Biochemical Taxonomy of symbiotic Chlorella strains from Paramecium and Acanthocystis. Bot Acta 103:140–142

    CAS  Google Scholar 

  • Kirk DL, Kirk MM (1978) Carrier-mediated uptake of arginine and urea by Chlamydomonas reinhardtii. Plant Physiol 61:556–560

    Article  PubMed  CAS  Google Scholar 

  • Kodama Y, Fujishima M (2008) Cycloheximide induced synchronous swelling of perialgal vacuoles enclosing symbiotic Chlorella vulgaris and digestion of the algae in the ciliate Paramecium bursaria. Protist 159:483–494

    Article  PubMed  Google Scholar 

  • Lew RR (1989) Calcium activates an electrogenic proton pump in Neurospora plasma membrane. Plant Physiol 91:213–216

    Article  PubMed  CAS  Google Scholar 

  • Loefer JB (1936) Bacteria-free culture of Paramecium bursaria and concentration of the medium as a factor in growth. J Exp Zool 72:387–407

    Article  Google Scholar 

  • Masuda M, Miyachi S, Maruyama T (1994) Sensitivity of zooxanthellae and non-symbiotic microalgae to stimulation of photosynthate excretion by giant clam tissue homogenate. Mar Biol 118:687–693

    Article  Google Scholar 

  • McAuley PJ (1986) Uptake of amino-acids by cultured and freshly isolated symbiotic Chlorella. New Phytol 104:415–428

    Article  CAS  Google Scholar 

  • McAuley PJ (1989) The effect of arginine on rates of internalization of other amino acids by symbiotic Chlorella cells. New Phytol 112:553–559

    Article  CAS  Google Scholar 

  • McAuley JP, Dorling M, Hodge H (1996) Effect of maltose release on uptake and assimilation of ammonium by symbiotic Chlorella (Chlorophyta). J Phycol 32:839–846

    Article  CAS  Google Scholar 

  • Meier R, Lefort-Tran M, Pouphile M, Reisser W, Wiessner W (1984) Comparative freeze-fracture study of perialgal and digestive vacuoles in Paramecium bursaria. J Cell Sci 71:121–140

    PubMed  CAS  Google Scholar 

  • Muscatine L (1967) Glycerol excretion by symbiotic algae from corals and Tridacna and its control by the host. Science 156:516–519

    Article  PubMed  CAS  Google Scholar 

  • Nakahara M, Handa S, Nakano T, Deguchi H (2003) Culture and pyrenoid structure of a symbiotic Chlorella species isolated from Paramecium bursaria. Symbiosis 34:203–214

    Google Scholar 

  • Nichols HW, Bold MC (1965) Trichosarcina polymorpha gen. et sp. nov. J Phycol 1:34–38

    Article  Google Scholar 

  • Nishihara N, Horiike S, Takahashi T, Kosaka T, Shigenaka Y, Hosoya H (1998) Cloning and characterization of endosymbiotic algae isolated from Paramecium bursaria. Protoplasma 203:91–99

    Article  Google Scholar 

  • Ogawa K, Shiraishi N, Mii M, Ida S, Komamine A, Nakagawa H (1994) Isolation and characterization of nitrate reductase – deficient mutants of cultured spinach cells: Biochemical, immunological and mRNA analysis. J Plant Physiol 143:279–285

    CAS  Google Scholar 

  • Pardy RL, Spargo B, Crowe JH (1989) Release of trehalose by symbiotic algae. Symbiosis 7:149–158

    CAS  Google Scholar 

  • Plakunov VK, Seifullina NKh, Voronia NA (1995) Specificity of induction of the “proline” transport system of neutral amino acids in Chlorella vulgaris. Microbiol 64:628–631

    Google Scholar 

  • Reisser W (1976) Die stoffwechselphysiologischen Beziehungen zwischen Paramecium bursaria Ehrbg. und Chlorella spec. in der Paramecium bursaria-Symbiose. II. Symbiose-spezifische Merkmale der Stoffwechselphysiologie und der Cytologie des Symbioseverbandes und ihre Regulation. Arch Microbiol 111:161–170

    Article  PubMed  CAS  Google Scholar 

  • Reisser W (1984) The taxonomy of green algae endosymbiotic in ciliates and a sponge. Br Phycol J 19:309–318

    Article  Google Scholar 

  • Reisser W (1986) Endosymbiotic associations of freshwater protozoa and algae. In: Corliss, JO, Patterson DJ (eds) Progress in protistology, vol 1. Biopress, Bristol, pp 195–214

    Google Scholar 

  • Reisser W (1988) Signals in the Paramecium bursaria – Chlorella sp. - association. In: Scannerini S, Smith D, Bonfante-Fasolo P, Gianinazzi-Pearson V (eds) Cell to cell signals in plant, animal and microbial symbiosis. Springer, Berlin, pp 281–296

    Google Scholar 

  • Reisser W, Widowski M (1992) Taxonomy of eukaryotic algae endosymbiotic in freshwater associations. In: Reisser W (ed) Algae and symbioses. Biopress, Bristol, pp 21–40

    Google Scholar 

  • Reisser W, Radunz A, Wiessner W (1982) Participation of algal surface structures in the cell recognition process during infection of aposymbiotic Paramecium bursaria with symbiotic chlorellae. Cytobios 33:39–50

    PubMed  CAS  Google Scholar 

  • Reisser W, Vietze S, Widowski M (1988) Taxonomic studies on endocytobiotic chlorophycean algae isolated from different American and European strains of Paramecium bursaria. Symbiosis 6:253–270

    Google Scholar 

  • Reisser W, Burbank DE, Meints RH, Becker B, Van Etten JL (1991) Viruses distinguish symbiotic Chlorella spp. of Paramecium bursaria. Endocytobiosis Cell Res 7:245–251

    Google Scholar 

  • Rickauer M, Tanner W (1986) Effect of Ca2+ on amino acid transportaccumulation in roots of Phaseolus vulgaris. Plant Physiol 82:41–46

    Article  PubMed  CAS  Google Scholar 

  • Ritchie RJ, Grant AJ, Eltringham K, Hinde R (1997) Clotrimazole, a model compound for the host release factor of the coral Plesiastrea versipora. Aust J Plant Physiol 24:283–290

    Article  CAS  Google Scholar 

  • Rolland F, Winderickx J, Thevelein JM (2001) Glucose-sensing mechanisms in eukaryotic cells. Trends Biochem Sci 26:310–317

    Article  PubMed  CAS  Google Scholar 

  • Sauer N (1984) A general amino-acid permease is inducible in Chlorella vulgaris. Planta 161:425–431

    Article  CAS  Google Scholar 

  • Schlichter D, Svoboda A, Kremer BP (1983) Functional autotrophy of Heteroxenia fuscescens (Anthozoa: Alcyonaria): carbon assimilation and translocation of photosynthates from symbionts to host. Mar Biol 78:29–38

    Article  CAS  Google Scholar 

  • Schüßler A, Schnept E (1992) Photosynthesis dependent acidification of perialgal vacuoles in the Paramecium bursaria / Chlorella symbiosis: visualization by monensin. Protoplasma 166:218–222

    Article  Google Scholar 

  • Seifullina NKh, Voronia NA, Plakunov VK (1995) The defferent nature of neutral amino acid transport systems induced by glucose and glycine in Chlorella vulgaris. Microbiology 64:501–503

    Google Scholar 

  • Shelp BT, Canvin DT (1985) Inorganic carbon accumulation and photosynthesis by Chlorella pyrenoidosa. Can J Bot 63:1249–1254

    Article  CAS  Google Scholar 

  • Smith IK (1978) Role of calcium in serine transport into tobacco cells. Plant Physiol 62:941–948

    Article  PubMed  CAS  Google Scholar 

  • Streamer M, Griffiths DJ, Luong-Van T (1988) The products of photosynthesis by zooxanthellae (Symbiodinium microadriacticum) of Tridacna gigas and their transfer to the host. Symbiosis 6:237–252

    CAS  Google Scholar 

  • Sutton DC, Hoegh-Guldberg O (1990) Host-zooxanthellae interactions in four temperate marine invertebrate symbioses: assessment of effect of host extracts on symbionts. Biol Bull 178:175–186

    Article  Google Scholar 

  • Taiz L, Zeiger E (2002) Plant physiology, 3rd edn. Sinauer, Sunderland pp 117, 186

    Google Scholar 

  • Takeda H (1995) Cell wall composition and taxonomy of symbiotic Chlorella from Paramecium and Acanthocysts. Phytochemistry 40:457–459

    Article  CAS  Google Scholar 

  • Tanner W (1969) Light-driven active uptake of 3-O-methylglucose via an inducible hexose uptake system in Chlorella. Biochem Biophys Res Commun 36:278–283

    Article  PubMed  CAS  Google Scholar 

  • Trench RK (1971) The physiology and biochemistry of zooxanthrellae symbiotic with marine coelenterates. III. The effect of homogenates of host tissues on the excretion of photosynthetic products in vitro by zooxanthellae from two marine coelenterates. Proc R Soc Lond B 177:251–264

    Article  CAS  Google Scholar 

  • Trench RK (1979) The cell biology of plant-animal symbiosis. Annu Rev Plant Physiol 30:485–531

    Article  CAS  Google Scholar 

  • Trench RK (1993) Microalgal-invertebrate symbioses: a review. Endocytobiosis Cell Res 9:135–175

    Google Scholar 

  • Van Etten JL, Meints HR, Kuczmarski D, Meints RH (1983) Virus infection for culturable Chlorella-like algae and development of a plaque assay. Science 219:994–996

    Article  PubMed  CAS  Google Scholar 

  • Whitehead LF, Douglas AE (2003) Metabolite comparisons and the identity of nutrients translocated from symbiotic algae to an animal host. J Exp Biol 206:3149–3157

    Article  PubMed  CAS  Google Scholar 

  • Willis RC, Iwata KK, Furiong CE (1975) Regulation of glutamine transport in Escherichia coli. J Bacteriol 122:1032–1037

    PubMed  CAS  Google Scholar 

  • Wu W, Berkowitz GA (1992a) K+ stimulation of ATPase activity associated with the chloroplast inner envelope. Plant Physiol 99:553–560

    Article  CAS  Google Scholar 

  • Wu W, Berkowitz GA (1992b) Stromal pH and photosynthesis are affected by electroneutral K+ and H+ exchange through chloroplast envelope ion channels. Plant Physiol 98:666–672

    Article  CAS  Google Scholar 

  • Yocum CF (1991) Calcium activation of photosynthetic water oxidation. Biochim Biophys Acta 1059:1–15

    Article  CAS  Google Scholar 

  • Young K, Seale RB, Olsson K, Aislabie J, Cook GM (2003) Amino acid transport by Sphingomonas sp. strain Ant 17 isolated from oil-contaminated Antarctic soil. Polar Biol 26:560–566

    Article  Google Scholar 

  • Ziesenisz E, Reisser W, Wiessner W (1981) Evidence of de novo synthesis of maltose excreted by the endosymbiotic Chlorella from Paramecium bursaria. Planta 153:481–485

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the editor, M. Fujishima, and the series editor, A. Steinbüchel, for providing us with an opportunity to write on this theme. Grateful acknowledgement is made to the following sources for permission to reproduce material in this chapter: Kamako and Imamura 2006; Kato et al. 2006; Kato and Imamura 2008b.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobutaka Imamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kato, Y., Imamura, N. (2009). Metabolic Control Between the Symbiotic Chlorella and the Host Paramecium . In: Fujishima, M. (eds) Endosymbionts in Paramecium. Microbiology Monographs, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92677-1_3

Download citation

Publish with us

Policies and ethics