Skip to main content

Monitoring Arterial Blood Pressure and Cardiac Output using Central or Peripheral Arterial Pressure Waveforms

  • Chapter
Book cover Yearbook of Intensive Care and Emergency Medicine

Part of the book series: Yearbook of Intensive Care and Emergency Medicine ((YEARBOOK,volume 2009))

Abstract

Arterial blood pressure and cardiac output are the two most important and frequently measured hemodynamic parameters in critically ill patients as they provide indirect information on global tissue perfusion and oxygen delivery, and can guide fluid management and vasoactive drug use [1, 2]. Inaccurate measurement of these parameters, both in the intensive care unit (ICU) and the operating room (OR), can lead to misdiagnosis and inappropriate treatment, potentially impacting on patient morbidity and mortality. In the ICU, arterial blood pressure is commonly measured invasively via a peripheral artery (e.g., radial) or less frequently via a central artery (e.g., femoral). However, because the arterial blood pressure is not constant throughout the arterial tree — as a consequence of changes in hydrostatic pressure, arterial stiffness, and pressure wave reflection that are dependent on individual characteristics (e.g., age, height, gender), disease state (e.g., sepsis), and the administration of vasoactive drugs — the site of arterial blood pressure measurement may not faithfully reflect organ perfusion pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pinsky MR (2002) Functional hemodynamic monitoring. Intensive Care Med 28: 386–388

    Article  PubMed  Google Scholar 

  2. Hofer CK, Ganter MT, Zollinger A (2007) What technique should I use to measure cardiac output? Curr Opin Crit Care 13: 308–317

    Article  PubMed  Google Scholar 

  3. Cholley BP, Payen D (2005) Noninvasive techniques for measurements of cardiac output. Curr Opin Crit Care 11: 424–429

    Article  PubMed  Google Scholar 

  4. Berton C, Cholley B (2002) Equipment review: new techniques for cardiac output measurement— oesophageal Doppler, Fick principle using carbon dioxide, and pulse contour analysis. Crit Care 6: 216–221

    Article  PubMed  Google Scholar 

  5. Della Rocca G, Costa MG (2005) Volumetric monitoring: principles of application. Minerva Anestesiol 71: 303–306

    PubMed  CAS  Google Scholar 

  6. Rodig G, Prasser C, Keyl C, Liebold A, Hobbhahn J (1999) Continuous cardiac output measurement: pulse contour analysis vs thermodilution technique in cardiac surgical patients. Br J Anaesth 82: 525–530

    PubMed  CAS  Google Scholar 

  7. Tannenbaum GA, Mathews D, Weissman C (1993) Pulse contour cardiac output in surgical intensive care unit patients. J Clin Anesth 5: 471–478

    Article  PubMed  CAS  Google Scholar 

  8. Weissman C, Ornstein EJ, Young WL (1993) Arterial pulse contour analysis trending of cardiac output: hemodynamic manipulations during cerebral arteriovenous malformation resection. J Clin Monit 9: 347–353

    Article  PubMed  CAS  Google Scholar 

  9. Gratz I, Kraidin J, Jacobi AG, deCastro NG, Spagna P, Larijani GE (1992) Continuous noninvasive cardiac output as estimated from the pulse contour curve. J Clin Monit 8: 20–27

    Article  PubMed  CAS  Google Scholar 

  10. Linton NW, Linton RA (2001) Estimation of changes in cardiac output from the arterial blood pressure waveform in the upper limb. Br J Anaesth 86: 486–496

    Article  PubMed  CAS  Google Scholar 

  11. Jansen JR, Wesseling KH, Settels JJ, Schreuder JJ (1990) Continuous cardiac output monitoring by pulse contour during cardiac surgery. Eur Heart J 11 (Suppl I):26–32

    PubMed  Google Scholar 

  12. Godje O, Hoke K, Goetz AE, et al (2002) Reliability of a new algorithm for continuous cardiac output determination by pulse-contour analysis during hemodynamic instability. Crit Care Med 30: 52–58

    Article  PubMed  Google Scholar 

  13. Band DM, Linton RA, O’Brien TK, Jonas MM, Linton NW (1997) The shape of indicator dilution curves used for cardiac output measurement in man. J Physiol 498 (Pt 1):225–229

    PubMed  CAS  Google Scholar 

  14. Linton RA, Band DM, Haire KM (1993) A new method of measuring cardiac output in man using lithium dilution. Br J Anaesth 71: 262–266

    Article  PubMed  CAS  Google Scholar 

  15. Linton R, Band D, O’Brien T, Jonas M, Leach R (1997) Lithium dilution cardiac output measurement: a comparison with thermodilution. Crit Care Med 25: 1796–1800

    Article  PubMed  CAS  Google Scholar 

  16. O’Rourke MF, Seward JB (2006) Central arterial pressure and arterial pressure pulse: new views entering the second century after Korotkov. Mayo Clin Proc 81: 1057–1068

    Article  PubMed  Google Scholar 

  17. Pauca AL, Wallenhaupt SL, Kon ND, Tucker WY (1992) Does radial artery pressure accurately reflect aortic pressure? Chest 102: 1193–1198

    Article  PubMed  CAS  Google Scholar 

  18. Hirata K, Kawakami M, O’Rourke MF (2006) Pulse wave analysis and pulse wave velocity: a review of blood pressure interpretation 100 years after Korotkov. Circ J 70: 1231–1239

    Article  PubMed  Google Scholar 

  19. Nichols WW, O’Rourke MF (2005) McDonald’s Blood Flow in Arteries, Fifth edn. Hodder Arnold, London

    Google Scholar 

  20. O’Rourke MF, Blazek JV, Morreels CL Jr, Krovetz LJ (1968) Pressure wave transmission along the human aorta. Changes with age and in arterial degenerative disease. Circ Res 23: 567–579

    PubMed  Google Scholar 

  21. Kelly RP, Gibbs HH, O’Rourke MF, et al (1990) Nitroglycerin has more favourable effects on left ventricular afterload than apparent from measurement of pressure in a peripheral artery. Eur Heart J 11: 138–144

    PubMed  CAS  Google Scholar 

  22. Slogoff S, Keats AS, Arlund C (1983) On the safety of radial artery cannulation. Anesthesiology 59: 42–47

    Article  PubMed  CAS  Google Scholar 

  23. Soderstrom CA, Wasserman DH, Dunham CM, Caplan ES, Cowley RA (1982) Superiority of the femoral artery of monitoring. A prospective study. Am J Surg 144: 309–312

    Article  PubMed  CAS  Google Scholar 

  24. Mignini MA, Piacentini E, Dubin A (2006) Peripheral arterial blood pressure monitoring adequately tracks central arterial blood pressure in critically ill patients: an observational study. Crit Care 10:R43

    Article  PubMed  Google Scholar 

  25. Yazigi A, Madi-Jebara S, Haddad F, Hayek G, Jawish D (2002) Accuracy of radial arterial pressure measurement during surgery under controlled hypotension. Acta Anaesthesiol Scand 46: 173–175

    Article  PubMed  CAS  Google Scholar 

  26. Kanazawa M, Fukuyama H, Kinefuchi Y, Takiguchi M, Suzuki T (2003) Relationship between aortic-to-radial arterial pressure gradient after cardiopulmonary bypass and changes in arterial elasticity. Anesthesiology 99: 48–53

    Article  PubMed  Google Scholar 

  27. Baba T, Goto T, Yoshitake A, Shibata Y (1997) Radial artery diameter decreases with increased femoral to radial arterial pressure gradient during cardiopulmonary bypass. Anesth Analg 85: 252–258

    Article  PubMed  CAS  Google Scholar 

  28. Chauhan S, Saxena N, Mehrotra S, Rao BH, Sahu M (2000) Femoral artery pressures are more reliable than radial artery pressures on initiation of cardiopulmonary bypass. J Cardiothorac Vasc Anesth 14: 274–276

    Article  PubMed  CAS  Google Scholar 

  29. Manecke GR, Jr., Parimucha M, Stratmann G, et al (2004) Deep hypothermic circulatory arrest and the femoral-to-radial arterial pressure gradient. J Cardiothorac Vasc Anesth 18: 175–179

    Article  PubMed  Google Scholar 

  30. Rivers EP, Lozon J, Enriquez E, et al (1993) Simultaneous radial, femoral, and aortic arterial pressures during human cardiopulmonary resuscitation. Crit Care Med 21: 878–883

    Article  PubMed  CAS  Google Scholar 

  31. Pauca AL, Wallenhaupt SL, Kon ND (1994) Reliability of the radial arterial pressure during anesthesia. Is wrist compression a possible diagnostic test? Chest 105: 69–75

    Article  PubMed  CAS  Google Scholar 

  32. Dorman T, Breslow MJ, Lipsett PA, et al (1998) Radial artery pressure monitoring underestimates central arterial pressure during vasopressor therapy in critically ill surgical patients. Crit Care Med 26: 1646–1649

    Article  PubMed  CAS  Google Scholar 

  33. Arnal D, Garutti I, Perez-Pena J, Olmedilla L, Tzenkov IG (2005) Radial to femoral arterial blood pressure differences during liver transplantation. Anaesthesia 60: 766–771

    Article  PubMed  CAS  Google Scholar 

  34. Gravlee GP, Wong AB, Adkins TG, Case LD, Pauca AL (1989) A comparison of radial, brachial, and aortic pressures after cardiopulmonary bypass. J Cardiothorac Anesth 3: 20–26

    Article  PubMed  CAS  Google Scholar 

  35. Wheeler AP, Bernard GR, Thompson BT, et al (2006) Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury. N Engl J Med 354:2213–2224

    Article  PubMed  Google Scholar 

  36. Shah MR, Hasselblad V, Stevenson LW, et al (2005) Impact of the pulmonary artery catheter in critically ill patients: meta-analysis of randomized clinical trials. JAMA 294: 1664–1670

    Article  PubMed  CAS  Google Scholar 

  37. Hirschl MM, Binder M, Gwechenberger M, et al (1997) Noninvasive assessment of cardiac output in critically ill patients by analysis of the finger blood pressure waveform. Crit Care Med 25: 1909–1914

    Article  PubMed  CAS  Google Scholar 

  38. de Wilde RB, Breukers RB, vanden Berg PC, Jansen JR (2006) Monitoring cardiac output using the femoral and radial arterial pressure waveform. Anaesthesia 61: 743–746

    Article  PubMed  Google Scholar 

  39. Orme RM, Pigott DW, Mihm FG (2004) Measurement of cardiac output by transpulmonary arterial thermodilution using a long radial artery catheter. A comparison with intermittent pulmonary artery thermodilution. Anaesthesia 59: 590–594

    Article  PubMed  Google Scholar 

  40. Wouters PF, Quaghebeur B, Sergeant P, Van Hemelrijck J, Vandermeersch E (2005) Cardiac output monitoring using a brachial arterial catheter during off-pump coronary artery bypass grafting. J Cardiothorac Vasc Anesth 19: 160–164

    Article  PubMed  Google Scholar 

  41. Smith J, Wolff C, Mills E, et al (2007) Comparison between uncalibrated cardiac output using the femoral and radial arterial pressure waveform in critically ill patients. Crit Care 11 (Suppl 2): P296 (abst)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Smith, J., Camporota, L., Beale, R. (2009). Monitoring Arterial Blood Pressure and Cardiac Output using Central or Peripheral Arterial Pressure Waveforms. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine. Yearbook of Intensive Care and Emergency Medicine, vol 2009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92276-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92276-6_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92275-9

  • Online ISBN: 978-3-540-92276-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics