Skip to main content

‘Myocardial Depression’ or’ Septic Cardiomyopathy’?

  • Chapter

Part of the book series: Yearbook of Intensive Care and Emergency Medicine ((YEARBOOK,volume 2009))

Abstract

’septic acute myocarditis’ in the pre-antibiotic era was a purulent disease of the heart. Nowadays, non-specific pathomorphological and pathohistological alterations characterize the myocardium of patients whose hearts have failed in septic shock. For decades, septic myocardial depression in animal models was attributed to the release of cardiodepressant factors into the blood stream, while the existence of human septic myocardial depression was only unequivocally proven in the early 1980s by the group of Parrillo [1], who had examined patients in the ICU with nuclear imaging techniques. Since then, experimental and clinical evidence has accumulated arguing for a more complex alteration of the heart in sepsis than exclusive myocardial depression. The concept of a “septic cardiomyopathy” was proposed [2], which emphasizes alterations of cardiac cellular phenotype as a basis of organopathy in response to a variety of agents acting on heart cells, like bacterial toxins and endogenous cytokines, hormones, mediators, and cardiodepressant factors. Not only is impairment of complex intrinsic heart function a consequence, but regulation of cardiac function is also severely disturbed due to excessive autonomic dysfunction [3].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Parrillo JE (1989) The cardiovascular pathophysiology of sepsis. Ann Rev Med 40: 469–485

    PubMed  CAS  Google Scholar 

  2. Müller-Werdan U, Reithmann C, Werdan K (1996) Cytokines and the Heart: Molecular Mechanisms of Septic Cardiomyopathy. Landes Bioscience, Austin

    Google Scholar 

  3. Schmidt H, Müller-Werdan U, Werdan K (2008) The consequences of cardiac autonomic dysfunction in multiple organ dysfunction syndrome. In: Vincent JL (ed) 2008 Yearbook of Intensive Care and Emergency Medicine. Springer, Heidelberg, pp 55–64

    Chapter  Google Scholar 

  4. Pilz G, McGinn P, Boekstegers P, Kääb S, Weidenhöfer S, Werdan K (1994) Pseudomonas sepsis does not cause more severe cardiovascular dysfunction in patients than non-pseudomonas sepsis. Circ Shock 42: 174–182

    PubMed  CAS  Google Scholar 

  5. Levy RJ, Piel DA, Acton PD, et al (2005) Evidence of myocardial hibernation in the septic heart. Crit Care Med 33: 2752–2756

    Article  PubMed  Google Scholar 

  6. Elliott P, Andersson B, Arbustini E, et al (2008) Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group On Myocardial and Pericardial Diseases. Eur Heart J 29: 270–276

    Article  PubMed  Google Scholar 

  7. Spies C, Haude V, Fitzner R, et al (1998) Serum cardiac troponin T as a prognostic marker in early sepsis. Chest 113: 1055–1063

    Article  PubMed  CAS  Google Scholar 

  8. Wu AHB(2001) Increased troponin in patients with sepsis and septic shock: myocardial necrosis or reversible myocardial depression? Intensive Care Med 27: 959–961

    Google Scholar 

  9. Brueckmann M, Huhle G, Lang S, et al (2005) Prognostic value of plasma N-Terminal pro-brain natriuretic peptide in patients with severe sepsis. Circulation 112: 527–534

    Article  PubMed  CAS  Google Scholar 

  10. Charpentier J, Luyt C-E, Fulla Y, et al (2004) Brain natriuretic peptide: A marker of myocardial dysfunction and prognosis during severe sepsis. Crit Care Med 32: 660–665

    Article  PubMed  CAS  Google Scholar 

  11. Witthaut R, Busch C, Fraunberger P, et al K (2003) Plasma atrial natriuretic peptide and brain natriuretic peptide are increased in septic shock: impact of interleukin-6 and sepsisassociated left ventricular dysfunction. Intensive Care Med 29: 1696–1702

    Article  PubMed  Google Scholar 

  12. McLean AS, Huang SJ (2006) Intensive care echocardiography. In: Vincent JL (ed) 2006 Yearbook of Intensive Care and Emergency Medicine. Springer, Heidelberg, pp 131–141

    Chapter  Google Scholar 

  13. Cotter G, Moshkovitz Y, Kaluski E, et al (2003) The role of cardiac power and systemic vascular resistance in the pathophysiology and diagnosis of patients with acute congestive heart failure. Eur J Heart Failure 5: 443–451

    Article  Google Scholar 

  14. Maeder M, Ammann P, Kiowski W, Rickli H (2005) B-type natriuretic peptide in patients with sepsis and preserved left ventricular ejection fraction. Eur J Heart Fail 7: 1164–1167

    Article  PubMed  CAS  Google Scholar 

  15. Müller-Werdan U, Buerke M, Ebelt H (2006) Septic cardiomyopathy-A not yet discovered cardiomyopathy? Exp Clin Cardiol 11: 226–236

    PubMed  Google Scholar 

  16. Levy RJ (2007) Mitochondrial dysfunction, bioenergetic impairment, and metabolic down-regulation in sepsis. Shock 28: 24–28

    Article  PubMed  CAS  Google Scholar 

  17. Cinel I, Nanda R, Dellinger RP (2008) Cardiac dysfunction in septic shock. In: Vincent JL (ed) Yearbook of Intensive Care and Emergency Medicine. Springer, Heidelberg, pp 43–54

    Chapter  Google Scholar 

  18. Zorn-Pauly K, Pelzmann B, Lang P, et al (2007) Endotoxin impairs the human pacemaker current If. Shock 28: 655–661

    PubMed  CAS  Google Scholar 

  19. Dhainaut JF, Hughebaert M-F, Monsallier JF, et al (1987) Coronary hemodynamics and myocardial metabolism of lactate, free fatty acids, glucose, and ketones in patients with septic shock. Circulation 75: 533–541

    PubMed  CAS  Google Scholar 

  20. Dhainaut J-F, Pinsky MR, Nouria S, Slomka F, Brunet F (1997) Right ventricular function in human sepsis-A thermodilution study. Chest 112: 1043–1049.

    Article  PubMed  CAS  Google Scholar 

  21. Varriale P, Ramaprasad S (1995) Septic cardiomyopathy as a cause of long QT syndrome. J Electrocardiology 28: 327–329

    Article  CAS  Google Scholar 

  22. Prondzinsky R, Stache N, Witthaut R, et al (1997) Multiorgan-failure (MOF) with and without sepsis: differences in incidence and pattern of detected arrhythmias. Crit Care 1(Suppl 1): P30

    Article  Google Scholar 

  23. Knotzer H, Mayr A, Ulmer H, et al (2000) Tachyarrhythmias in a surgical intensive care unit: a case-controlled epidemiologic study. Intensive Care Med 26: 908–914

    Article  PubMed  CAS  Google Scholar 

  24. Müller-Werdan U, Engelmann H, Werdan K (1998) Cardiodepression by tumor necrosis factor α. Eur Cytokine Netw 9: 689–691

    PubMed  Google Scholar 

  25. Müller-Werdan U, Werdan K (2000) Immune modulation by catecholamines-a potential mechanism of cytokine release in heart failure? Herz 25: 271–273

    Article  PubMed  Google Scholar 

  26. Müller-Werdan U, Jacoby J, Loppnow H, et al (1999) Noradrenaline stimulates cardiomyocytes to produce interleukin-6, indicative of a proinflammatory action, which is suppressed by carvedilol. Eur Heart J 20(Suppl):P1721 (abst)

    Google Scholar 

  27. Godin P J, Buchman T G (1996) Uncoupling of biological oscillators: a complementary hypothesis concerning the pathogenesis of multiple organ dysfunction syndrome. Crit Care Med 24: 1107–1116

    Article  PubMed  CAS  Google Scholar 

  28. Schmidt H, Muller-Werdan U, Hoffmann T, et al (2005) Autonomic dysfunction predicts mortality in patients with multiple organ dysfunction syndrome of different age groups. Crit Care Med 33: 1994–2002

    Article  PubMed  Google Scholar 

  29. Tracey K J (2007). Physiology and immunology of the cholinergic antiinflammatory pathway. J Clin Invest 117: 289–296

    Article  PubMed  CAS  Google Scholar 

  30. Godin P J, Fleisher L A, Eidsath A, et al (1996) Experimental human endotoxemia increases cardiac regularity: results from a prospective, randomized, crossover trial. Crit Care Med 24: 1117–1124.

    Article  PubMed  CAS  Google Scholar 

  31. Baruscotti M, Bucchi A, &amp Difrancesco D (2005) Physiology and pharmacology of the cardiac pacemaker (“funny”) current. Pharmacol Ther 107: 59–79

    Article  PubMed  CAS  Google Scholar 

  32. Ludwig A, Zong X, Hofmann F, & Biel M (1999) Structure and function of cardiac pacemaker channels. Cell Physiol Biochem 9: 179–186

    Article  PubMed  CAS  Google Scholar 

  33. Schmidt H, Saworski J, Werdan K, Muller-Werdan U (2007) Decreased beating rate variability of spontaneously contracting cardiomyocytes after co-incubation with endotoxin. J Endotoxin Res 13: 339–342

    Article  PubMed  CAS  Google Scholar 

  34. Kurata Y, Hisatome I, Imanishi S, Shibamoto T (2002) Dynamical description of sinoatrial node pacemaking: improved mathematical model for primary pacemaker cell. Am J Physiol Heart Circ Physiol 283: H2074–2101

    PubMed  CAS  Google Scholar 

  35. Sakr Y, Reinhart K, Vincent JL, et al (2006) Does dopamine administration in shock influence outcome? Results of the Sepsis Occurrence in Acutely Ill Patients (SOAP) Study. Crit Care Med 34: 589–597

    Article  PubMed  CAS  Google Scholar 

  36. Cunha-Goncalves D, Perez-de-Sa V, Dahm P, Grins E, Thörne J, Blomquist S (2007) Cardiovascular effects of levosimendan in the early stages of endotoxemia. Shock 28: 71–77

    Article  PubMed  CAS  Google Scholar 

  37. Takeuchi K, del Nido PJ, Ibrahim AE, et al (1999) Vesnarinone and amrinone reduce the systemic inflammatory response syndrome. J Thorac Cardiovasc Surg 117: 375–381

    Article  PubMed  CAS  Google Scholar 

  38. Wagner DR, McTiernan C, Sanders VJ, Feldman AM (1998) Adenosine inhibits lipopolysaccharide-induced secretion of tumor necrosis factor-α in the failing human heart. Circulation 97: 521–524

    PubMed  CAS  Google Scholar 

  39. Suzuki T, Morisaki H, Serita R, et al (2005) Infusion of the beta-adrenergic blocker esmolol attenuates myocardial dysfunction in septic rats. Crit Care Med 33: 2294–2301

    Article  PubMed  CAS  Google Scholar 

  40. De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL (2002) Microvascular blood flow is altered in sepsis. Am J Respir Crit Care Med 166: 98–104

    Article  PubMed  Google Scholar 

  41. Elebute EA, Stoner HB (1983) The grading of sepsis. Br J Surg 70: 29–31

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Werdan, K., Oelke, A., Müller-Werdan, U. (2009). ‘Myocardial Depression’ or’ Septic Cardiomyopathy’?. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine. Yearbook of Intensive Care and Emergency Medicine, vol 2009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92276-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92276-6_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92275-9

  • Online ISBN: 978-3-540-92276-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics