Skip to main content

A Computational Scheme Based on Random Boolean Networks

  • Chapter
Transactions on Computational Systems Biology X

Part of the book series: Lecture Notes in Computer Science ((TCSB,volume 5410))

Abstract

For decades, the size of silicon CMOS transistors has decreased steadily while their performance has improved. As the devices approach their physical limits, the need for alternative materials, structures and computational schemes becomes evident. This paper considers a computational scheme based on an abstract model of the gene regulatory network called Random Boolean Network (RBN). On one hand, our interest in RBNs is due to their attractive fault-tolerant features. The parameters of an RBN can be tuned so that it exhibits a robust behavior in which minimal changes in network’s connections, values of state variables, or associated functions, typically cause no variation in the network’s dynamics. On the other hand, a computational scheme based on RBNs seems appealing for emerging technologies in which it is difficult to control the growth direction or precise alignment, e.g. carbon nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts, B., Bray, D., Lewis, J., Ra, M., Roberts, K., Watson, J.D.: Molecular Biology of the Cell. Garland Publishing, New York (1994)

    Google Scholar 

  2. Jacob, F., Monod, J.: Genetic regulatory mechanisms in the synthesis of proteins. Journal of Molecular Biology 3, 318–356 (1961)

    Article  Google Scholar 

  3. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed nets. Journal of Theoretical Biology 22, 437–467 (1969)

    Article  MathSciNet  Google Scholar 

  4. Huang, S., Ingber, D.E.: Shape-dependent control of cell growth, differentiation, and apoptosis: Switching between attractors in cell regulatory networks. Experimental Cell Research 261, 91–103 (2000)

    Article  Google Scholar 

  5. Kauffman, S.A., Weinberger, E.D.: The nk model of rugged fitness landscapes and its application to maturation of the immune response. Journal of Theoretical Biology 141, 211–245 (1989)

    Article  Google Scholar 

  6. Bornholdt, S., Rohlf, T.: Topological evolution of dynamical networks: Global criticality from local dynamics. Physical Review Letters 84, 6114–6117 (2000)

    Article  Google Scholar 

  7. Atlan, H., Fogelman-Soulie, F., Salomon, J., Weisbuch, G.: Random Boolean networks. Cybernetics and System 12, 103–121 (2001)

    Article  MathSciNet  Google Scholar 

  8. Aldana, M., Coopersmith, S., Kadanoff, L.P.: Boolean dynamics with random couplings, http://arXiv.org/abs/adap-org/9305001

  9. Derrida, B., Pomeau, Y.: Random networks of automata: a simple annealed approximation. Biophys. Lett. 1, 45 (1986)

    Google Scholar 

  10. Derrida, B., Flyvbjerg, H.: Multivalley structure in Kauffman’s model: Analogy with spin glass. J. Phys. A: Math. Gen. 19, L1103 (1986)

    Article  Google Scholar 

  11. Derrida, B., Flyvbjerg, H.: Distribution of local magnetizations in random networks of automata. J. Phys. A: Math. Gen. 20, L1107 (1987)

    Article  MathSciNet  Google Scholar 

  12. Snow, E.S., Novak, J.P., Campbell, P.M., Park, D.: Random networks of carbon nanotubes as an electronic material. Applied Physics Letters 81(13), 2145–2147 (2003)

    Article  Google Scholar 

  13. Luque, B., Sole, R.V.: Stable core and chaos control in Random boolean networks. Journal of Physics A: Mathematical and General 31, 1533–1537 (1998)

    Article  MATH  Google Scholar 

  14. Flyvbjerg, H., Kjaer, N.J.: Exact solution of Kauffman model with connectivity one. J. Phys. A: Math. Gen. 21, 1695 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Bastola, U., Parisi, G.: The critical line of Kauffman networks. J. Theor. Biol. 187, 117 (1997)

    Article  Google Scholar 

  16. Kauffman, S.A.: The Origins of Order: Self-Organization and Selection of Evolution. Oxford University Press, Oxford (1993)

    Google Scholar 

  17. Socolar, J.E.S., Kauffman, S.A.: Scaling in ordered and critical random Boolean networks, http://arXiv.org/abs/cond-mat/0212306

  18. Bastola, U., Parisi, G.: The modular structure of Kauffman networks. Phys. D 115, 219 (1998)

    Article  Google Scholar 

  19. Wuensche, A.: The DDlab manual (2000), http://www.cogs.susx.ac.uk/users/andywu/man_contents.html

  20. Bilke, S., Sjunnesson, F.: Stability of the Kauffman model. Physical Review E 65, 016129 (2001)

    Article  Google Scholar 

  21. Dubrova, E., Teslenko, M., Martinelli, A.: Kauffman networks: Analysis and applications. In: Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, pp. 479–484 (November 2005)

    Google Scholar 

  22. Bryant, R.: Graph-based algorithms for Boolean function manipulation. Transactions on Computer-Aided Design of Integrated Circuits and Systems 35, 677–691 (1986)

    MATH  Google Scholar 

  23. Flyvbjerg, H.: An order parameter for networks of automata. J. Phys. A: Math. Gen. 21, L955 (1988)

    Article  MathSciNet  Google Scholar 

  24. Bastola, U., Parisi, G.: Relevant elements, magnetization and dynamic properties in Kauffman networks: a numerical study. Physica D 115, 203 (1998)

    Article  Google Scholar 

  25. Dubrova, E., Teslenko, M.: Compositional properties of Random Boolean Networks. Physical Review E 71, 056116 (2005)

    Article  MathSciNet  Google Scholar 

  26. Hachtel, G.D., Somenzi, F.: Logic Synthesis and Verification Algorithms. Kluwer Academic Publishers, Norwell (2000)

    Google Scholar 

  27. Burch, J., Clarke, E., McMillan, K., Dill, D., Hwang, L.: Symbolic Model Checking: 1020 States and Beyond. In: Proceedings of the Fifth Annual IEEE Symposium on Logic in Computer Science, Washington, D.C, pp. 1–33. IEEE Computer Society Press, Los Alamitos (1990)

    Google Scholar 

  28. Burch, J., Clarke, E., Long, D.E., McMillan, K., Dill, D.: Symbolic Model Checking for sequential circuit verification. Transactions on Computer-Aided Design of Integrated Circuits and Systems 13(4), 401–442 (1994)

    Article  Google Scholar 

  29. Bjesse, P.: DAG-aware circuit compression for formal verification. In: Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, pp. 42–49 (November 2004)

    Google Scholar 

  30. Reddy, S.M., Kunz, W., Pradhan, D.K.: Novel verification framework combining structural and OBDD methods in a synthesis environment. In: Proceedings of the 32th ACM/IEEE Design Automation Conference, San Francisco, pp. 414–419 (June 1995)

    Google Scholar 

  31. Williams, P.F., Biere, A., Clarke, E.M., Gupta, A.: Combining decision diagrams and SAT procedures for efficient symbolic model checking. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 125–138. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  32. van Eijk, C.A.J., Jess, J.A.G.: Detection of equivalent state variables in finite state machine verification. In: 1995 ACM/IEEE International Workshop on Logic Synthesis, Tahoe City, CA, pp. 3-35–3-44 (May 1995)

    Google Scholar 

  33. Geist, D., Beer, I.: Efficient model checking by automated ordering of transition relation partitions. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 299–310. Springer, Heidelberg (1994)

    Google Scholar 

  34. Liu, A.Y., True, L.D.: Characterization of prostate cell types by cd cell surface molecules. The American Journal of Pathology 160, 37–43 (2002)

    Google Scholar 

  35. Birnbaum, K.D., Shasha, D.E., Wang, J.Y., Jung, J.W., Lambert, G.M., Galbraith, D.W., Benfey, P.N.: A global view of cellular identity in the Arabidopsis root. In: Proceedings of the International Conference on Arabidopsis Research, Berlin, Germany (July 2004)

    Google Scholar 

  36. De Sales, J.A., Martins, M.L., Stariolo, D.A.: Cellular automata model for gene networks. Physical Review E 55, 3262–3270 (1997)

    Article  Google Scholar 

  37. Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dubrova, E., Teslenko, M., Tenhunen, H. (2008). A Computational Scheme Based on Random Boolean Networks. In: Priami, C., Dressler, F., Akan, O.B., Ngom, A. (eds) Transactions on Computational Systems Biology X. Lecture Notes in Computer Science(), vol 5410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92273-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92273-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92272-8

  • Online ISBN: 978-3-540-92273-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics