Skip to main content

Additive Spanners for Circle Graphs and Polygonal Graphs

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5344))

Abstract

A graph G = (V,E) is said to admit a system of μ collective additive tree r-spanners if there is a system \(\cal{T}\)(G) of at most μ spanning trees of G such that for any two vertices u,v of G a spanning tree \(T\in \cal{T}\)(G) exists such that the distance in T between u and v is at most r plus their distance in G. In this paper, we examine the problem of finding “small” systems of collective additive tree r-spanners for small values of r on circle graphs and on polygonal graphs. Among other results, we show that every n-vertex circle graph admits a system of at most \(2\log_{\frac{3}{2}}n\) collective additive tree 2-spanners and every n-vertex k-polygonal graph admits a system of at most \(2\log_{\frac{3}{2}}k+7\) collective additive tree 2-spanners. Moreover, we show that every n-vertex k-polygonal graph admits an additive (k + 6)-spanner with at most 6n − 6 edges and every n-vertex 3-polygonal graph admits a system of at most 3 collective additive tree 2-spanners and an additive tree 6-spanner. All our collective tree spanners as well as all sparse spanners are constructible in polynomial time.

This work was supported by the European Regional Development Fund (ERDF) and by NSERC.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartal, Y.: Probabilistic approximations of metric spaces and its algorithmic applications. In: FOCS 1996, pp. 184–193 (1996)

    Google Scholar 

  2. Bartal, Y.: On approximating arbitrary metrices by tree metrics. In: STOC 1998, pp. 161–168 (1998)

    Google Scholar 

  3. Barthélemy, J.-P., Guénoche, A.: Trees and Proximity Representations. Wiley, New York (1991)

    MATH  Google Scholar 

  4. Bhatt, S., Chung, F., Leighton, F., Rosenberg, A.: Optimal simulations of tree machines. In: FOCS 1986, pp. 274–282 (1986)

    Google Scholar 

  5. Charikar, M., Chekuri, C., Goel, A., Guha, S., Plotkin, S.: Approximating a Finite Metric by a Small Number of Tree Metrics. In: FOCS 1998, pp. 379–388 (1998)

    Google Scholar 

  6. Cai, L., Corneil, D.G.: Tree spanners. SIAM J. Discrete Math. 8, 359–387 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Corneil, D.G., Dragan, F.F., Köhler, E., Xiang, Y.: Lower Bounds for Collective Additive Tree Spanners (in preparation)

    Google Scholar 

  8. Chepoi, V.D., Dragan, F.F., Yan, C.: Additive Sparse Spanners for Graphs with Bounded Length of Largest Induced Cycle. Theoretical Computer Science 347, 54–75 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chew, L.P.: There are planar graphs almost as good as the complete graph. J. of Computer and System Sciences 39, 205–219 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Corneil, D.G., Dragan, F.F., Köhler, E., Yan, C.: Collective tree 1-spanners for interval graphs. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 151–162. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Dragan, F.F., Corneil, D.G., Köhler, E., Xiang, Y.: Additive Spanners for Circle Graphs and Polygonal Graphs (manuscript, 2008), http://www.cs.kent.edu/~dragan/Coll-Spanners-Circle.pdf

  12. Dragan, F.F., Yan, C.: Collective Tree Spanners in Graphs with Bounded Genus, Chordality, Tree-width, or Clique-width. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 583–592. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Dragan, F.F., Yan, C., Corneil, D.G.: Collective Tree Spanners and Routing in AT-free Related Graphs. Journal of Graph Algorithms and Applications 10, 97–122 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dragan, F.F., Yan, C., Lomonosov, I.: Collective tree spanners of graphs. SIAM J. Discrete Math. 20, 241–260 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Elmallah, E.S., Stewart, L.: Polygon Graph Recognition. Journal of Algorithms 26, 101–140 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics by tree metrics. In: STOC 2003, pp. 448–455 (2003)

    Google Scholar 

  17. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, 2nd edn. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  18. Gupta, A., Kumar, A., Rastogi, R.: Traveling with a Pez Dispenser (or, Routing Issues in MPLS). SIAM J. Comput. 34, 453–474 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liestman, A.L., Shermer, T.: Additive graph spanners. Networks 23, 343–364 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM Monographs on Discrete Math. Appl. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  21. Peleg, D.: Proximity-Preserving Labeling Schemes and Their Applications. J. of Graph Theory 33, 167–176 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Peleg, D., Schäffer, A.A.: Graph Spanners. J. Graph Theory 13, 99–116 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. In: PODC 1987, pp. 77–85 (1987)

    Google Scholar 

  24. Prisner, E.: Distance approximating spanning trees. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 499–510. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  25. Sneath, P.H.A., Sokal, R.R.: Numerical Taxonomy. W.H. Freeman, San Francisco (1973)

    MATH  Google Scholar 

  26. Swofford, D.L., Olsen, G.J.: Phylogeny reconstruction. In: Hillis, D.M., Moritz, C. (eds.) Molecular Systematics, pp. 411–501. Sinauer Associates Inc., Sunderland (1990)

    Google Scholar 

  27. Thorup, M., Zwick, U.: Compact routing schemes. In: SPAA 2001, pp. 1–10 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dragan, F.F., Corneil, D.G., Köhler, E., Xiang, Y. (2008). Additive Spanners for Circle Graphs and Polygonal Graphs. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds) Graph-Theoretic Concepts in Computer Science. WG 2008. Lecture Notes in Computer Science, vol 5344. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92248-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92248-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92247-6

  • Online ISBN: 978-3-540-92248-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics