Advertisement

A High Payload VQ Steganographic Method for Binary Images

  • Chin-Chen Chang
  • Chih-Yang Lin
  • Yu-Zheng Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5041)

Abstract

In this paper, we propose a new VQ steganographic method for embedding binary images and improving the stego-image quality. The main idea is using the new S-tree to represent the binary image and applying the genetic k-means clustering technique on the codebook to obtain strong cohesion clusters in order to reduce the replacement distortion. Experimental results show that our method outperforms the existing schemes on both image quality and embedding capacity.

Keywords

Steganography data hiding clustering genetic algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, R.J., Petitcolas, F.A.P.: On the limits of steganography. IEEE Journal on Selected Areas in Communications 16, 474–481 (1998)CrossRefGoogle Scholar
  2. 2.
    Bandyopadhyay, S., Maulik, U.: Nonparametric genetic clustering: comparison of validity indices. IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews 31(1), 120–125 (2001)CrossRefGoogle Scholar
  3. 3.
    Bender, W., Gruhl, D., Morimoto, N., Lu, A.: Techniques for data hiding. IBM Systems Journal 35(3&4), 313–336 (1996)CrossRefGoogle Scholar
  4. 4.
    Chang, C.C., Jau, C.C., Chen, T.S.: Chinese calligraphy compression using new S-tree structure. In: Proceedings of International Conference on Chinese Information Processing, Beijing, China, pp. 38–47 (1998)Google Scholar
  5. 5.
    Chang, C.C., Lin, P.Y.: A compression-based data hiding scheme using vector quantization and principle component analysis. In: Proceedings of 2004 International Conference on Cyberworlds, Tokyo, Japan, pp. 369–375 (2004)Google Scholar
  6. 6.
    Chang, C.C., Tseng, H.W.: A steganographic method for digital images using side-match. Pattern Recognition Letters 25(12), 1431–1437 (2004)CrossRefGoogle Scholar
  7. 7.
    Du, W.C., Hsu, W.J.: Adaptive data hiding based on VQ compressed images. IEE Proceedings-Vision, Image and Signal Processing 150(4), 233–238 (2003)CrossRefGoogle Scholar
  8. 8.
    Gen, M., Cheng, R.: Genetic algorithms and engineering optimization. John Wiley & Sons, Inc., Chichester (2000)Google Scholar
  9. 9.
    Gersho, A., Gray, R.M.: Vector quantization and signal compression. Kluwer Academic Publishers, Dordrecht (1992)CrossRefzbMATHGoogle Scholar
  10. 10.
    Gray, R.M.: Vector quantization. IEEE Transactions on Acoustics, Speech, and Signal Processing 1(2), 4–29 (1984)Google Scholar
  11. 11.
    Jo, M., Kim, H.D.: A digital image watermarking scheme based on vector quantization. IEICE Transactions on Information and Systems E85-D (6), 1054–1056 (2002)Google Scholar
  12. 12.
    Jonge, W.D., Scheuermann, P., Schijf, A.: S + -Trees: An efficient structure for the representation of large pictures. CVGIP: Image Understanding 59(3), 265–280 (1994)CrossRefGoogle Scholar
  13. 13.
    Katzenbeisser, S., Petitcolas, F.A.P.: Information hiding techniques for steganography and digital watermarking. Artech House (2000)Google Scholar
  14. 14.
    Lin, Y.C., Wang, C.C.: Digital images watermarking by vector quantization. In: National Computer Symposium, vol. 3, pp. 76–87 (1999)Google Scholar
  15. 15.
    Linde, Y., Buzo, A., Gary, R.M.: An algorithm for vector quantization design. IEEE Transactions on Communications 28, 84–95 (1980)CrossRefGoogle Scholar
  16. 16.
    Lu, Z.M., Sun, S.H.: Digital image watermarking technique based on vector quantization. Electronics Letters 36(4), 303–305 (2000)CrossRefGoogle Scholar
  17. 17.
    Michalewicz, Z.: Genetic algorithms + data structures = evolution programs. Springer, Heidelberg (1996)CrossRefzbMATHGoogle Scholar
  18. 18.
    Ujjwal, M., Sanghamitra, B.: Genetic algorithm-based clustering technique. Pattern Recognition 33(9), 1455–1465 (2000)CrossRefGoogle Scholar
  19. 19.
    Wang, R.Z., Lin, C.F., Lin, J.C.: Image hiding by optimal LSB substitution and genetic algorithm. Pattern Recognition 34(3), 671–683 (2001)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Chin-Chen Chang
    • 1
    • 2
  • Chih-Yang Lin
    • 2
  • Yu-Zheng Wang
    • 2
  1. 1.Department of Information Engineering and Computer ScienceFeng Chia UniversityTaichungTaiwan, R.O.C.
  2. 2.Department of Computer Science and Information EngineeringNational Chung Cheng UniversityChiayiTaiwan, R.O.C.

Personalised recommendations