Advertisement

On the Complexity of Obtaining Optimal Watermarking Schemes

  • Julien Lafaye
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5041)

Abstract

In this paper, we try to answer the question: is the task of obtaining optimal watermarking schemes computationally feasible ? We introduce a formalism to express watermarking algorithms over finite domains of contents and exploit it to study two aspects of watermarking: the relevance of the detection process and its robustness. We formulate the search for an optimal scheme as an optimisation problem. We prove that (1) finding the algorithm which has the highest relevance for a fixed robustness against a known attack is NEXP-complete relatively to the domain encoding size and that (2) finding the algorithm which has the highest robustness for a fixed relevance is NP-complete relatively to the cardinality of the application domain.

Keywords

Adjacency Matrix Vertex Cover Watermark Scheme Pareto Frontier Information Hiding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adelsbach, A., Katzenbeisser, S., Sadeghi, A.-R.: A computational model for watermark robustness. In: Camenisch, J.L., Collberg, C.S., Johnson, N.F., Sallee, P. (eds.) IH 2006. LNCS, vol. 4437. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Cayre, F., Fontaine, C., Furon, T.: Watermarking security: Theory and practice. IEEE Transactions on Signal Processing 53(10), 3976–3987 (2005)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chen, B., Wornell, G.W.: Quantization index modulation: A class of provably good methods for digital watermarking and information embedding. IEEE Transactions on Information Theory 47(4), 1423–1443 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Comesaña, P., Pérez-González, F., Balado, F.: Watermarking security: a survey. IEEE Transactions on Signal Processing 54(2), 585–600 (2006)CrossRefGoogle Scholar
  5. 5.
    Cox, I.J., Miller, M.L., Bloom, J.A.: Digital Watermarking. Morgan Kaufmann Publishers, Inc., San Francisco (2001)Google Scholar
  6. 6.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness, Apr. 1979. W.H. Freeman & Company, New York (1979)zbMATHGoogle Scholar
  7. 7.
    Herley, C.: Why watermarking is nonsense. IEEE Signal Processing Magazine 19(5), 10–11 (2002)CrossRefGoogle Scholar
  8. 8.
    Kalker, T.: Considerations on watermarking security. In: Proceedings of the IEEE Multimedia Signal Processing Workshop, IIHMSP 2006, pp. 201–206 (2001)Google Scholar
  9. 9.
    Katzenbeisser, S., Petitcolas, F.A.: Information hiding, techniques for steganography and digital watermarking. Artech house (2000)Google Scholar
  10. 10.
    Kerckhoffs, A.: La cryptographie militaire. Journal des sciences militaires IX, 5–38 (January 1883)Google Scholar
  11. 11.
    Li, Q., Chang, E.: Security of public watermarking schemes for binary sequences. In: Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol. 2578, pp. 119–128. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Merhav, N., Sabbag, E.: Optimal watermark embedding and detection strategies under limited detection resources. In: IEEE Transactions on Information Theory (submitted) (December 2005), http://www.ee.technion.ac.il/people/merhav/
  13. 13.
    Moulin, P., Koetter, R.: Data-hiding codes (tutorial paper). Proceedings of the IEEE 93(12), 2083–2127 (2005)CrossRefGoogle Scholar
  14. 14.
    Moulin, P., O’Sullivan, J.A.: Information-theoretic analysis of information hiding. IEEE Transactions on Information Theory 49(3), 563–593 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1993)zbMATHGoogle Scholar
  16. 16.
    Papadimitriou, C.H., Yannakakis, M.: A note on succinct representations of graphs. Information and Control 71, 181–185 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and optimal access of web sources. In: IEEE Symposium on Foundations of Computer Science, FOCS 2000, pp. 86–92 (2000)Google Scholar
  18. 18.
    Skyum, S., Valiant, L.: A complexity theory based on boolean algebra. Journal of the ACM 32(2), 484–502 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Wegener, I.: The Complexity of Boolean Functions, January 1991. Wiley, Chichester (1991)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Julien Lafaye
    • 1
  1. 1.Cnam - Cédric, 292 rue Saint Martin - CC 432PARIS Cedex 3France

Personalised recommendations