A Modified Kernels-Alternated Error Diffusion Watermarking Algorithm for Halftone Images

  • Linna Tang
  • Jiangqun Ni
  • Chuntao Wang
  • Rongyue Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5041)


Digital Halftoning is the rendition of continues-tone images on two-level displays. A modified kernels-alternated error diffusion (KAEDF) watermarking algorithm for halftone images is presented in this paper, which can achieve relatively large embedding rate with good visual quality and high robustness. With the introduction of threshold modulation in error diffusion, the proposed algorithm greatly eliminates the edge sharpening and noise shaping distortion of the watermarked halftone image due to the conventional error diffusion algorithm. Consequently, more spectral distribution features in DFT domain characterized with the two alternated kernels, i.e., Jarvis and Stucki, are preserved in the resulting watermarked halftone image, which greatly improves the performance of watermark decoding. Instead of the original grey level image, the one generated with the inverse halftone algorithm is utilized to determine the local threshold for blind watermark detection. Extensive simulations are carried out, which demonstrates that the modified KAEDF watermarking algorithm achieves significant improvements in performance of visual quality and watermark decoding rate.


Visual Quality Watermark Image Watermark Algorithm Contrast Sensitivity Function Threshold Modulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Floyd, R., Steinberg, L.: An adaptive algorithm for spatial grayscale. Proc. Society for Information Display 17(2), 75–77 (1976)Google Scholar
  2. 2.
    Jarvis, J.F., Judice, C.N., Ninke, W.H.: A survey of techniques for the display of continuous-tone pictures on bilevel displays. Computer Graphics and Image Process 5(1), 13–40 (1976)CrossRefGoogle Scholar
  3. 3.
    Stucki, P.: MECCA - a multiple error correcting computation algorithm for bi-level image hard copy reproduction. Research report RZ1060, IBM Research Laboratory, Zurich, Switzerland (1981)Google Scholar
  4. 4.
    Ulichney, R.A.: Dithering with blue noise. Proc. IEEE 76(1), 56–79 (1987)CrossRefGoogle Scholar
  5. 5.
    Knuth, D.E.: Digital halftones by dot diffusion. ACM Trans. Graph. 6(4), 245–273 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Seldowitz, M.A., Allebach, J.P., Sweeney, D.E.: Synthesis of digital holograms by direct binary search. Appl. Opt. 26(14), 2788–2798 (1987)CrossRefGoogle Scholar
  7. 7.
    Fu, M.S., Au, O.C.: Data hiding by smart pair toggling for halftone images. In: Proc. IEEE Int. Conf. Acoustics. Speech and Signal Processing, vol. 4(6), pp. 2318–2321 (2000)Google Scholar
  8. 8.
    Fu, M.S., Au, O.C.: Data hiding watermarking for halftone images. IEEE Trans. Image Processing 11(4), 477–484 (2002)CrossRefGoogle Scholar
  9. 9.
    Pei, S.C., Guo, J.M.: Hybrid pixel-based data hiding and block-based watermarking for error-diffused halftone images. IEEE Trans. Circuits and System 13(8), 867–884 (2003)Google Scholar
  10. 10.
    Knox, K., Eschbach, R.: Threshold modulation in error diffusion. J. Elect. Imaging 2(7), 185–192 (1993)CrossRefGoogle Scholar
  11. 11.
    Kite, T.D., Damera-Venkata, N., Evans, B.L., Bovik, A.C.: A fast, high-quality inverse halftoning algorithm for error diffused halftones. IEEE Trans. Image Processing 9(9), 1583–1592 (2000)CrossRefGoogle Scholar
  12. 12.
    Kite, T.D., Evans, B.L., Bovik, A.C.: Modeling and quality assessment of halftoning by error diffusion. IEEE Trans. on Image Proc. 9(5), 636–650 (2000)CrossRefGoogle Scholar
  13. 13.
    Mista, T., Varkur, K.: Evaluation of contrast sensitivity functions for the formulation of quality measures incorporated in halftoning algorithms. In: Proc. IEEE Inf. Conf. Acoustics, Speech, Signal Processing, vol. 5(4), pp. 301–304 (1993)Google Scholar
  14. 14.
    Knox, K.: Error image in error diffusion. Proc. SPIE Image Proc, Alg. Tech. 1657(2), 268–279 (1992)Google Scholar
  15. 15.
    Damer-venkata, N., Kite, T.D., Geisler, W.S., et al.: Image quality assessment based on a degradation model. IEEE Trans. on Image Proc. 9(4), 636–650 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Linna Tang
    • 1
  • Jiangqun Ni
    • 1
    • 2
  • Chuntao Wang
    • 1
  • Rongyue Zhang
    • 1
  1. 1.Department of Electronics and Communication EngineeringSun Yat-Sen UniversityGuangzhouP.R. China
  2. 2.Guangdong Key Laboratory of Information Security TechnologyGuangzhouP.R. China

Personalised recommendations