Advertisement

Design an Aperiodic Stochastic Resonance Signal Processor for Digital Watermarking

  • Shuifa Sun
  • Bangjun Lei
  • Sheng Zheng
  • Sam Kwong
  • Xuejun Zhou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5041)

Abstract

In this paper, we propose an aperiodic stochastic resonance (ASR) signal processor for communication systems based on a bi-stable mechanism. This processor can detect base-band binary pulse amplitude modulation (PAM) signals. In this processor related parameters can be adjusted. The adjustment mechanism is explained from the perspective of the conventional noise-induced nonlinear signal processing. To demonstrate this processors usability, based on it we implemented a digital image watermarking algorithm in the discrete cosine transform (DCT) domain. In this algorithm, the watermark and the DCT alternating current (ac) coefficients of the image are viewed as the input signal and the channel noise, respectively. This phenomenon that the detection bit error ratio (BER) of the system suffering from certain attacks is lower than that of the system not suffering from any attack is systematically analyzed.

Keywords

digital watermarking stochastic resonance signal processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benzi, R., Sutera, S., Vulpiani, A.: The Mechanism of Stochastic Resonance. J. Phys. A 14, 453–457 (1981)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Hu, G., Gong, D., Wen, X., et al.: Stochastic resonance in a nonlinear system driven by an aperiod force. Phys. Rev. A 46, 3250–3254 (1992)CrossRefGoogle Scholar
  3. 3.
    Godivier, X., Chapeau-Blondeau, F.: Stochastic resonance in the information capacity of a nonlinear dynamic system. Int. J. Bifurcation and Chaos 8(3), 581–590 (1998)CrossRefzbMATHGoogle Scholar
  4. 4.
    Duan, F., Xu, B.: Parameter-induced stochastic resonance and baseband binary PAM signals transmission over an AWGN channel. Int. J. Bifurcation and Chaos 13(2), 411–425 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Sun, S., Kwong, S.: Stochastic resonance signal processor: principle, capacity analysis and method. Int. J. Bifurcation and Chaos 17, 631–639 (2007)CrossRefzbMATHGoogle Scholar
  6. 6.
    Moss, F., Pierson, D., O’Gorman, D.: Stochastic resonance: Tutorial and update. Int. J. Bifurcation and Chaos 4(6), 1383–1398 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Xu, B., Duan, F., Chapeau-Blondeau, F.: Comparison of aperiodic stochastic resonance in a bistable system realized by adding noise and by tuning system parameters. Physical Review E 69, 061110, 1–8 (2004)Google Scholar
  8. 8.
    Mitaim, S., Kosko, B.: Adaptive stochastic resonance. Proc. IEEE. 86, 2152–2183 (1998)CrossRefGoogle Scholar
  9. 9.
    Schyndel, R.G., Tirkel, A.Z., Osborne, C.F.: A Digital Watermark. In: Proc. IEEE Int. Conf. on Image Processing (IEE Computer Soc., Austin USA), pp. 86–90 (1994)Google Scholar
  10. 10.
    Cox, I., Kilian, J.: Secure spread spectrum watermarking for multimedia. IEEE Trans. on Image Processing 6(12), 1673–1687 (1997)CrossRefGoogle Scholar
  11. 11.
    Barni, M., Bartolini, F., Capellini, V., Piva, A.: A DCT-domain system for robust image watermarking. Signal Processing 66, 357–372 (1998)CrossRefzbMATHGoogle Scholar
  12. 12.
    Chen, B., Wornell, G.: Quantization Index Modulation: A Class of Provably Good Methods for Digital Watermarking and Information Embedding. IEEE Trans. on Information Theory 47, 1423–1443 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Sun, S., Qiu, P.: Algorithm of digit watermarking based on parameter-induced stochastic resonance. Journal on Communications 26(12), 48–55 (2005)Google Scholar
  14. 14.
    Wu, G., Qiu, Z.: A Novel Watermarking Scheme Based on Stochastic Resonance. In: Proc. IEEE Int. Conf. on Signal Processing, Guiling China, pp. 1265–1269 (2006)Google Scholar
  15. 15.
    Cox, I., Miller, M.L., McKellips, A.L.: Watermarking as communications with side information. Proc. IEEE 87(7), 1127–1141 (1999)CrossRefGoogle Scholar
  16. 16.
    Xu, B., Li, J., Duan, F.: Effects of colored noise on multi-frequency signal processing via stochastic resonance with tuning system parameters. Chaos. Solitons and Fractals 16, 93–106 (2003)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Shuifa Sun
    • 1
    • 2
    • 3
  • Bangjun Lei
    • 2
  • Sheng Zheng
    • 1
    • 2
  • Sam Kwong
    • 3
  • Xuejun Zhou
    • 1
  1. 1.College of Electrical Engineering and Information TechnologyChina Three Gorges UniversityYichangChina
  2. 2.Institute of Intelligent Vision and Image InformationChina Three Gorges UniversityYichangChina
  3. 3.Department of Computer ScienceCity University of Hong Kong, KowloonHong Kong SARP.R. China

Personalised recommendations