Advertisement

GA-Based Robustness Evaluation Method for Digital Image Watermarking

  • G. Boato
  • V. Conotter
  • F. G. B. De Natale
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5041)

Abstract

The present paper proposes a new flexible and effective evaluation tool based on genetic algorithms to test the robustness of digital image watermarking techniques. Given a set of possible attacks, the method finds the best possible un-watermarked image in terms of Weighted Peak Signal to Noise Ratio (WPSNR). In fact, it implements a stochastic search of the optimal parameters to be assigned to each processing operation in order to find the combined attack that removes the watermark while producing the smallest possible degradation of the image in terms of human perception. As a result, the proposed method makes it possible to assess the overall performance of a watermarking scheme, and to have an immediate feedback on its robustness to different attacks. A set of tests is presented, referring to the application of the tool to two known watermarking approaches.

Keywords

Human Visual System Watermark Image Watermark Scheme Host Image JPEG Compression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cox, I.J., Kilian, J., Leighton, F.T., Shamoon, T.: Secure Spread Spectrum Watermarking for Multimedia. IEEE Transactions on Image Processing 6, 1673–1687 (1997)CrossRefGoogle Scholar
  2. 2.
    Cox, I.J., Miller, M.L., Bloom, J.A.: Digital Watermarking. Academic Press, London (2002)Google Scholar
  3. 3.
    Eggers, J., Girod, B.: Informed Watermarking. Kluwer Academic Publishers, Norwell (2002)CrossRefGoogle Scholar
  4. 4.
    Barni, M., Bartolini, F.: Watermarking Systems Engineering. Enabling Digital Assets Security and Other Applications. Signal Processing and Communications Series (2004)Google Scholar
  5. 5.
  6. 6.
    Voloshynovskiy, S., Pereira, S., Iquise, V., Pun, T.: Attack Modelling: Towards a Second Generation Watermarking Benchmark. Signal Processing 81, 1177–1214 (2001)CrossRefzbMATHGoogle Scholar
  7. 7.
    Pereira, S., Voloshynovskiy, S., Madueno, M., Marchand-Maillet, S., Pun, T.: Second Generation Benchmarking and Application Oriented Evaluation. In: Proceedings of the International Workshop on Information Hiding, pp. 340–353 (2001)Google Scholar
  8. 8.
  9. 9.
  10. 10.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1999)Google Scholar
  11. 11.
    Tsoy, Y.R.: The Influence of Population Size and Search Time Limit on Genetic Algorithm. In: Proceedings of the 7th Korea-Russia International Symposium on Science and Technology, vol. 3, pp. 181–187 (2003)Google Scholar
  12. 12.
    Maity, S.P., Kundu, M.K., Nandi, P.K.: Genetic Algorithm for Optimal Imperceptibility in Image Communication through Noisy Channel. In: Proceedings of the International Conference on Neural Information Processing, pp. 700–705 (2004)Google Scholar
  13. 13.
    Huang, C.H., Wu, J.L.: A watermark optimization technique based on genetic algorithms. In: Proceeding of SPIE - Visual Communications Image Processing, pp. 516–523 (2000)Google Scholar
  14. 14.
    Shieh, C.S., Huang, H.C., Wang, F.H., Pan, J.S.: Genetic watermarking based on transform-domain techniques. PElsevier Science Pattern Recognition 37, 555–565 (2004)CrossRefGoogle Scholar
  15. 15.
    Chang, Y.-L., Sun, K.-T., Chen, Y.-H.: ART2-Based Genetic Watermarking. In: Proceedings of the International Conference on Advanced Information Networking and Applications, pp. 729–734 (2005)Google Scholar
  16. 16.
    Kumsawat, P., Attakitmongcol, K., Srikaew, A.: A New Approach for Optimization in Wavelet-based Image Watermarking by using Genetic Algorithm. In: Proceedings of the International Conference on Artificial Intelligence and Applications, pp. 328–332 (2005)Google Scholar
  17. 17.
    Kumsawat, P., Attakitmongcol, K., Srikaew, A.: A New Approach for Optimization in Image Watermarking by using Genetic Algorithm. IEEE Transactions on Image Processing 53, 4707–4719 (2005)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Wu, Y.-T., Shih, F.Y.: Genetic algorithm based methodology for breaking the steganalytic systems. IEEE Transactions on Systems, Man, and Cybernetics 36, 24–31 (2006)CrossRefGoogle Scholar
  19. 19.
    Wang, Z., Bovik, A.C.: Modern Image Quality Assessment. Morgan & Claypool, San Francisco (2006)Google Scholar
  20. 20.
    Voloshynovskiy, S., Herrigel, A., Baumgaertner, N., Pun, T.: A Stochastic Approach to Content Adaptive Digital Image Watermarking. In: Proceedings of the International Workshop on Information Hiding, pp. 211–236 (1999)Google Scholar
  21. 21.
    Barni, M., Bartolini, F., Piva, A.: Improved Wavelet-Based Watermarking Through Pixel-Wise Masking. IEEE Transactions on Image Processing 10, 783–791 (2001)CrossRefzbMATHGoogle Scholar
  22. 22.
    Tzeng, J., Hwang, W.-L., Chern, I.-L.: An asymmetric subspace watermarking method for copyright protection. IEEE Transactions on Signal Processing 53, 784–792 (2005)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Boato, G., De Natale, F.G.B., Fontanari, C.: An Improved Asymmetric Watermarking Scheme Suitable for Copy Protection. IEEE Transactions on Signal Processing 54, 2833–2834 (2006)CrossRefGoogle Scholar
  24. 24.
    Boato, G., De Natale, F.G.B., Fontanari, C.: Digital Image Tracing by Sequential Multiple Watermarking. IEEE Transactions on Multimedia 9, 677–686 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • G. Boato
    • 1
  • V. Conotter
    • 1
  • F. G. B. De Natale
    • 1
  1. 1.Department of Information and Communication TechnologyUniversity of TrentoTrentoItaly

Personalised recommendations