An Improved Reversible Difference Expansion Watermarking Algorithm

  • Sachnev Vasiliy
  • Hyoung-Joong Kim
  • Shijun Xiang
  • Jeho Nam
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5041)


In this paper, we propose an improved reversible watermarking algorithm by using the simplified location map. The proposed embedding method is based on the Alattar integer transform [3]. Here, we extend the case of using four pixels. Proposed simplified location map we propose just covers those necessary quads, the improved watermarking algorithm has a larger embedding capacity in comparison with the work of Alattar[3]. Simulation testing shows that our embedding strategy has achieved a better performance for all tested images.


Expansion Method Data Hiding Watermark Algorithm Reversible Data Hiding Reversible Watermark 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alattar, A.M.: Reversible watermark using dierence expansion oftriplets. In: Pro-ceedings of the International Conference on Image Processing, vol. 1, pp. 501–504 (2003)Google Scholar
  2. 2.
    Alattar, A.M.: Reversible watermark using dierence expansion of quads. In: Pro-ceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 3, pp. 377–380 (2004)Google Scholar
  3. 3.
    Alattar, A.M.: Reversible watermark using the dierence expansion of a generalized integer transform. IEEE Transactions on Image Processing 13(8), 1147–1156 (2004)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bao, F., Deng, R.H., Ooi, B.C., Yang, Y.: Tailored reversible watermarking schemes for authentication of electronic clinical atlas. IEEE Transactions on Information Technology in Biomedicine 9(4), 554–563 (2005)CrossRefGoogle Scholar
  5. 5.
    Barton, J.M.: Method and apparatus for embedding authentication information within digital data, U.S. Patent 5,646,997 (1997)Google Scholar
  6. 6.
    Celik, M., Sharma, G., Tekalp, A.M., Saber, E.: Reversible data hiding. In: Pro-ceedings of the International Conference on Image Processing, Rochester, NY, pp. 157–160 (2002)Google Scholar
  7. 7.
    Fridrich, J., Goljan, M., Du, R.: Invertible authentication. In: Proc. SPIE, Security and Watermarking of Multimedia Contents, SanJose, CA, pp. 197–208 (2001)Google Scholar
  8. 8.
    Goljan, M., Fridrich, J., Du, R.: Distortion-free data embedding. In: Proceedings of the Information Hiding Workshop, Pittsburgh, PA, pp. 27–41 (2001)Google Scholar
  9. 9.
    Honsinger, C.W., Jones, P., Rabbani, M.: Lossless recovery of an original image containing embedded data, US Patent 6,278,791B1 (2001)Google Scholar
  10. 10.
    Kamstra, L., Heijmans, H.J.A.M.: Reversible data embedding into images using wavelet techniques and sorting. IEEE Transactions on Image Processing 14(12), 2082–2090 (2005)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Macq, B., Deweyand, F.: Trusted headers for medical images. In: DFG VIII-D II Watermarking Workshop, Erlangen, Germany (1999)Google Scholar
  12. 12.
    Ni, Z., Shi, Y.Q., Ansari, N., Su, W., Sun, Q., Lin, X.: Robust lossless image data hiding. In: IEEE International Conference on Multimedia and Expo, Taipei, Taiwn, pp. 2199–2202 (2004)Google Scholar
  13. 13.
    Ni, Z., Shi, Y.Q., Ansari, N., Su, W.: Reversible data hiding. IEEE transactions on circuits and systems for video technology 16(3), 354–362 (2006)CrossRefGoogle Scholar
  14. 14.
    Thodi, D.M., Rodriguez, J.J.: Reversible watermarking by prediction-error expansion. In: IEEE Southwest Symposium on Image Analysis and Interpretation, LakeTahoe, CA, pp. 21–25 (2004)Google Scholar
  15. 15.
    Tian, J.: Reversible data embedding using a difference expansion. IEEE Transaction on Circuits and Systems for Video Technology 13(8), 890–896 (2003)CrossRefGoogle Scholar
  16. 16.
    de Vleeschouwer, C., Delaigle, J.F., Macq, B.: Circular interpretation of bijective transformations in lossless watermarking for media asset management. IEEE Transactions on Multimedia 5(1), 97–105 (2003)CrossRefGoogle Scholar
  17. 17.
    Xuan, G., Zhu, J., Chen, J., Shi, Y.Q., Ni, Z., Su, W.: Distortionless data hiding based on integer wavelet transform. IEE Electronics Letters 38(25), 1646–1648 (2002)CrossRefGoogle Scholar
  18. 18.
    Xuan, G., Shi, Y.Q., Ni, Z.C., Chen, J., Yang, C., Zhen, Y., Zheng, J.: High capacity lossless data hiding based on integer wavelet transform. In: Proceedings of IEEE International Conference on Circuits and Systems, Vancouver, Canada (2004)Google Scholar
  19. 19.
    Xuan, G., Shi, Y.Q.: Integer wavelet transform based lossless data hiding using spread spectrum. In: IEEE International Workshop on Multimedia Signal Processing, Siena, Italy (2004)Google Scholar
  20. 20.
    Yang, B., Schmucker, M., Funk, W., Busch, C., Sun, S.: Integer DCT-based reversible watermarking for images using companding technique. In: Proceedings of SPIE, vol. 5306, pp. 405–415 (2004)Google Scholar
  21. 21.
    Yang, B., Schmucker, M., Busch, C., Niu, X., Sun, S.: Approaching optimal value expansion for reversible watermarking. In: Proceedings of the 7th workshop on Multimedia and Security, pp. 95–102 (2005)Google Scholar
  22. 22.
    Zou, D., Shi, Y.Q., Ni, Z.: A semi-fragile lossless data hiding scheme based on integer wavelet transform. In: IEEE International Workshop on Multimedia Signal Processing, Siena, Italy (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Sachnev Vasiliy
    • 1
  • Hyoung-Joong Kim
    • 1
  • Shijun Xiang
    • 3
  • Jeho Nam
    • 2
  1. 1.CIST, Graduate School of Information Security and ManagementKorea UniversitySeoulKorea
  2. 2.ETRIDaejeonKorea
  3. 3.College of Information Science and TechnologyJinan UniversityGuangzhouP.R. China

Personalised recommendations