Skip to main content

Self-Organization for Fault-Tolerance

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 5343))

Abstract

In the last decade, there has been a considerable increase of interest in fault-tolerant computing due to dependability problems related to process scaling, embedded systems, and ubiquitous computing. In this paper, we present an approach to fault-tolerance inspired by gene regulatory networks of living cells. Living cells are capable of maintaining their functionality under a variety of genetic changes and external perturbations. They have natural self-healing, self-maintaining, self-replicating, and self-assembling mechanisms. The fault-tolerance of living cells is due to the ability of their gene regulatory network to self-organize and produce a stable attractors’ landscape. We introduce a computational scheme which exploits the intrinsic stability of attractors to achieve fault-tolerant computation. We also test fault-tolerance of the presented scheme on the example of a gene regulatory network model of Arabidopsis thaliana and show that it can tolerate 68% single-point mutations in the outputs of the defining tables of gene functions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Terrestrial cosmic rays and soft errors. IBM Journal of Research and Development, 40(1) (1996)

    Google Scholar 

  2. Albert, R., Othmer, H.G.: The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in drosophila melanogaster. J. Theor. Biol. 223, 1–18 (2002)

    Article  MathSciNet  Google Scholar 

  3. Albert, R., Othmer, H.G.: The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in drosophila melanogaster. J. Theor. Biol. 223, 1–18 (2003)

    Article  MathSciNet  Google Scholar 

  4. Alberts, B., Bray, D., Lewis, J., Ra, M., Roberts, K., Watson, J.D.: Molecular Biology of the Cell. Garland Publishing, New York (1994)

    Google Scholar 

  5. Aldana, M., Balleza, E., Kauffman, S., Resendis, O.: Robustness and evolvability in gene regulatory networks. J. Theor. Biol. 245, 433–448 (2007)

    Article  Google Scholar 

  6. Aldana, M., Coopersmith, S., Kadanoff, L.P.: Boolean dynamics with random couplings, http://arXiv.org/~abs/adap-org/9305001

  7. Balleze, E., Alvarez-Buylla, E., Chaos, A., Kauffman, S., Shmulevich, I., Aldana, M.: Critical dynamics in genetic regulatory networks: Examples from four kingdoms, http://www.fis.unam.mx/~max/English/paperplos-one-1.pdf

  8. Bastola, U., Parisi, G.: The critical line of Kauffman networks. J. Theor. Biol. 187, 117 (1997)

    Article  Google Scholar 

  9. Baumann, R.: Soft errors in advanced comuter systems. IEEE Design and Test of Comuters 22(3), 258–266 (2005)

    Article  Google Scholar 

  10. Bryant, R.: Graph-based algorithms for Boolean function manipulation. Transactions on Computer-Aided Design of Integrated Circuits and Systems 35, 677–691 (1986)

    MATH  Google Scholar 

  11. Camazine, S., Deneubourg, J.-L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-Organization in Biological Systems. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  12. Chaos, A., Aldana, M., Espinosa-Soto, C., de Leon, B.G.P., Arroyo, A.G., Alvarez-Buylla, E.R.: From genes to flower patterns and evolution: Dynamic models of gene regulatory networks. Journal of Plant Growth Regulation 25(4), 278–289 (2006)

    Article  Google Scholar 

  13. Chaves, M., Sontag, E.D., Albert, R.: Methods of robustness analysis for Boolean models of gene control networks. IEE Proceedings of Systems Biology 153, 154–167 (2006)

    Article  Google Scholar 

  14. Dubrova, E., Teslenko, M.: Compositional properties of Random Boolean Networks. Physical Review E 71, 056116 (May 2005)

    Article  MathSciNet  Google Scholar 

  15. Dubrova, E., Teslenko, M., Martinelli, A.: Kauffman networks: Analysis and applications. In: Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, pp. 479–484 (November 2005)

    Google Scholar 

  16. Dubrova, E., Teslenko, M., Tenhunen, H.: A computational model based on random Boolean networks. In: BIONETICS 2007 (2007)

    Google Scholar 

  17. Espinosa-Soto, C., Padilla-Longoria, P., Alvarez-Buylla, E.R.: A gene regulatory network model for cell-fate determination during arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles. The Plant Cell 16, 2923–2939 (2004)

    Article  Google Scholar 

  18. Flyvbjerg, H., Kjaer, N.J.: Exact solution of Kauffman model with connectivity one. J. Phys. A: Math. Gen. 21, 1695 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gershenson, C.: Updating schemes in random Boolean networks: Do they really matter? In: Proceedings of the Ninth International Conference on the Simulation and Syuntheis of Living Systems, pp. 238–243 (2004)

    Google Scholar 

  20. Glass, L., Hill, C.: Ordered and disordered dynamics in random networks. Europhysics Letter 12, 599–604 (1998)

    Article  Google Scholar 

  21. Huang, S., Eichler, G., Ber-Yam, Y., Ingber, D.E.: Cell fates as high-dimensional sttractor states of a complex gene regulatory network. Physical Rev. Let. 94, 128701–128704 (2005)

    Article  Google Scholar 

  22. Huang, S., Ingber, D.E.: Shape-dependent control of cell growth, differentiation, and apoptosis: Switching between attractors in cell regulatory networks. Experimental Cell Research 261, 91–103 (2000)

    Article  Google Scholar 

  23. Jacob, F., Monod, J.: Genetic regulatory mechanisms in the synthesis of proteins. Journal of Molecular Biology 3, 318–356 (1961)

    Article  Google Scholar 

  24. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed nets. Journal of Theoretical Biology 22, 437–467 (1969)

    Article  MathSciNet  Google Scholar 

  25. Kauffman, S.A.: The Origins of Order: Self-Organization and Selection of Evolution. Oxford University Press, Oxford (1993)

    Google Scholar 

  26. Kauffman, S.A.: Investigations. Oxford University Press, Oxford (2002)

    Google Scholar 

  27. Luque, B., Sole, R.V.: Stable core and chaos control in random Boolean networks. Journal of Physics A: Mathematical and General 31, 1533–1537 (1998)

    Article  MATH  Google Scholar 

  28. Meindl, J.D., Chen, Q., Davis, J.A.: Limits on silicon nanoelectronics for terascale integration. Science 293, 2044–2049 (2001)

    Article  Google Scholar 

  29. Mendoza, L., Alvarez-Buylla, E.R.: Genetic regulation of root hair development in Arabidopsis thaliana: A network model. J. Theor. Biol. 204, 311–326 (2000)

    Article  Google Scholar 

  30. Nykter, M., Price, N.D., Aldana, M., Ramsey, S.A., Kauffman, S.A., Hood, L.E., Yli-Harja, O., Shmulevich, I.: Gene expression dynamics in the macrophage exhibit criticality. Proc. Natl. Acad. Sci. U.S.A. 105(6), 1897–1900 (2008)

    Article  Google Scholar 

  31. Schlitt, T., Brazma, A.: Current approaches to gene regulatory network modelling. BMC Bioinformatics 6, S9 (2007)

    Article  Google Scholar 

  32. Thomas, R., Thieffry, D., Kaufman, M.: Dynamical behaviour of biological regulatory networks I. Biological role of feedback loops and practical use of the concept of the loop-characteristic state. Bull. Math. Biol. 57, 247–276 (1995)

    Article  MATH  Google Scholar 

  33. von Dassow, G., Meir, E., Munro, E.M., Odell, G.M.: The segment polarity network is a robust developmental module. Nature 406, 188–193 (2000)

    Article  Google Scholar 

  34. Wagner, A.: Robustness and evolvability in living systems. Oxford University Press, Oxford (2007)

    Google Scholar 

  35. Weiser, M.: Some computer science problems in ubiquitous computing. Communications of the ACM 36(7), 74–83 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dubrova, E. (2008). Self-Organization for Fault-Tolerance. In: Hummel, K.A., Sterbenz, J.P.G. (eds) Self-Organizing Systems. IWSOS 2008. Lecture Notes in Computer Science, vol 5343. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92157-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92157-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92156-1

  • Online ISBN: 978-3-540-92157-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics