Skip to main content

Computing Equiangular Lines in Complex Space

  • Chapter
Mathematical Methods in Computer Science

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5393))

Abstract

We consider the problem of finding equiangular lines in complex space, i. e., sets of unit vectors such that the modulus of the inner product between any two vectors is constant. We focus on the case of d 2 such vectors in a space of dimension d which corresponds to so-called SIC-POVMs. We discuss how symmetries can be used to simplify the problem and how the corresponding system of polynomial equations can be solved using techniques of modular computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appleby, D.M.: SIC-POVMs and the Extended Clifford Group. Journal of Mathematical Physics 46, 052107 (2005); Preprint quant-ph/0412001

    Article  MathSciNet  Google Scholar 

  2. Arnold, E.A.: Modular Algorithms for Computing Gröbner Bases. Journal of Symbolic Computation 35(4), 403–419 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bosma, W., Cannon, J.J., Playoust, C.: The Magma Algebra System I: The User Language. Journal of Symbolic Computation 24(3–4), 235–266 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Buchberger, B.: A Theoretical Basis for the Reduction of Polynomials to Canonical Forms. ACM SIGSAM Bulletin 10(3), 19–29 (1976)

    Article  MathSciNet  Google Scholar 

  5. Cox, D.A., Little, J.B., O’Shea, D.: Ideals, Varieties, and Algorithms. Springer, New York (1992)

    Book  MATH  Google Scholar 

  6. Faugère, J.C.: A New Efficient Algorithm for Computing Gröbner Bases (F4). Journal of Pure and Applied Algebra 139(1–3), 61–88 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Faugère, J.C., Gianni, P., Lazard, D., Mora, T.: Efficient Computations of Zero-dimensional Gröbner Bases by Change of Ordering. Journal of Symbolic Computation 16(4), 329–344 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Flammia, S.T.: On SIC-POVMs in Prime Dimensions. Journal of Physics A 39(43), 13483–13493 (2006); Preprint quant-ph/0605050

    Article  MathSciNet  MATH  Google Scholar 

  9. Flammia, S.T., Silberfarb, A., Caves, C.M.: Minimal Informationally Complete Measurements for Pure States. Foundations of Physics 35(12), 1985–2006 (2005); Preprint quant-ph/0404137

    Article  MathSciNet  MATH  Google Scholar 

  10. Grassl, M.: On SIC-POVMs and MUBs in Dimension 6. In: Proceedings ERATO Conference on Quantum Information Science 2004 (EQIS 2004), Tokyo, pp. 60–61 (September 2004); Preprint quant-ph/0406175

    Google Scholar 

  11. Grassl, M.: Tomography of Quantum States in Small Dimensions. Electronic Notes in Discrete Mathematics 20, 151–164 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grassl, M.: Finding Equiangular Lines in Complex Space. Talk at the MAGMA 2006 Conference, Technische Universität Berlin (July 2006)

    Google Scholar 

  13. Hoggar, S.G.: t-Designs in Projective Spaces. European Journal of Combinatorics 3, 233–254 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. Khatirinejad, M.: On Weyl-Heisenberg Orbits of Equiangular Lines. Journal of Algebraic Combinatorics 28(3), 333–349 (2007) (Published online November 6, 2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lemmens, P.H.W., Seidel, J.J.: Equiangular Lines. Journal of Algebra 24(3), 494–512 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  16. Renes, J.M., Blume-Kohout, R., Scott, A.J., Caves, C.M.: Symmetric Informationally Complete Quantum Measurements. Journal of Mathematical Physics 45(6), 2171–2180 (2004); Preprint quant-ph/0310075

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, P.S., Guy, M.J.T., Davenport, J.H.: P-adic Reconstruction of Rational Numbers. ACM SIGSAM Bulletin 16(2), 2–3 (1982)

    Article  MATH  Google Scholar 

  18. Zauner, G.: Quantendesigns: Grundzüge einer nichtkommutativen Designtheorie. Dissertation, Universität Wien (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grassl, M. (2008). Computing Equiangular Lines in Complex Space. In: Calmet, J., Geiselmann, W., Müller-Quade, J. (eds) Mathematical Methods in Computer Science. Lecture Notes in Computer Science, vol 5393. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89994-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89994-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89993-8

  • Online ISBN: 978-3-540-89994-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics