Skip to main content

A Criterion for Attaining the Welch Bounds with Applications for Mutually Unbiased Bases

  • Chapter
Mathematical Methods in Computer Science

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5393))

Abstract

The paper gives a short introduction to mutually unbiased bases and the Welch bounds and demonstrates that the latter is a good technical tool to explore the former. In particular, a criterion for a system of vectors to satisfy the Welch bounds with equality is given and applied for the case of MUBs. This yields a necessary and sufficient condition on a set of orthonormal bases to form a complete system of MUBs.

This condition takes an especially elegant form in the case of homogeneous systems of MUBs. We express some known constructions of MUBs in this form. Also it is shown how recently obtained results binding MUBs and some combinatorial structures (such as perfect nonlinear functions and relative difference sets) naturally follow from this criterion.

Some directions for proving non-existence results are sketched as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aharonov, Y., Englert, B.-G.: The mean kings problem: Spin 1, Z. Natur-forsch. 56a, 16–19 (2001)

    Google Scholar 

  2. Alltop, W.O.: Complex sequences with low periodic correlations. IEEE Transactions on Information Theory 26(3), 350–354 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beth, T., Jungnickel, D., Lenz, H.: Design Theory, 2nd edn. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  4. Bengtsson, I., Bruzda, W., Ericsson, A., Larsson, J.-A., Tadej, W., Zyczkowski, K.: Mubs and Hadamards of Order Six (2006) (arXiv:quant-ph/0610161 v1)

    Google Scholar 

  5. Bennett, C.H., Brassard, G.: Quantum Cryptography: Public Key Distribution and Coin Tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, New York, pp. 175–179 (1984)

    Google Scholar 

  6. Blokhuis, A., Jungnickel, D., Schmidt, B.: Proof of the Prime Power Conjecture for Projective Planes of Order n with Abelian Collineation Groups of Order n 2. Proceedings of AMS 130(5), 1473–1476 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carlet, C., Ding, C.: Highly nonlinear mappings. Journal of Complexity 20, 205–244 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Coulter, R.S., Matthews, R.W.: Planar functions and planes of Lenz-Barlotti class II. Des., Codes, Cryptogr. 10, 167–184 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dembowski, P., Ostrom, T.G.: Planes of order n with collineation groups of order n 2. Math. Zeilschr. 103, 239–258 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  10. Diestel, R.: Graph theory, 3rd edn. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  11. Ding, C., Yuan, J.: A family of skew Hadamard difference sets. Journal of Combinatorial Theory, Series A 113, 1526–1535 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Elliott, J.E.H., Butson, A.T.: Relative difference sets. Illinois J. Math. 10, 517–531 (1966)

    MathSciNet  MATH  Google Scholar 

  13. Englert, B.-G.: Mutually unbiased bases. Problem page in Quantum Information at TU Braunschweig, http://www.imaph.tu-bs.de/qi/problems/13.html

  14. Frankl, P.: Orthogonal vectors in the n-dimensional cube and codes with missing distances. Combinatorica 6(3), 279–285 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gold, R.: Maximal recursive sequences with 3-valued recursive cross-correlation functions. IEEE Trans. Inform. Theory IT-14, 154–156 (1967)

    MATH  Google Scholar 

  16. Godsil, C., Roy, A.: Equiangular lines, mutually unbiased bases, and spin models (2005) (arXiv:quant-ph/0511004 v2)

    Google Scholar 

  17. Hall Jr., M.: The theory of groups. The Macmillan Company, Basingstoke (1968)

    Google Scholar 

  18. Helleseth, T., Kumar, V.J.: Sequences with low correlation. In: Pless, V., Huffman, C. (eds.) Handbook of Coding Theory. Elsevier, Amsterdam (1998)

    Google Scholar 

  19. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  20. Ito, N.: Hadamard graphs. Graphs and Combinatories 1, 57–64 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ivanović, I.D.: Geometrical description of quantal state determination. J. Phys. A 14, 3241–3245 (1981)

    Article  MathSciNet  Google Scholar 

  22. Klappenecker, A., Rötteler, M.: Mutually Unbiased Bases are Complex Projective 2-Designs (2005) (arXiv:quant-ph/0502031 v2)

    Google Scholar 

  23. Klappenecker, A., Rötteler, M.: Constructions of Mutually Unbiased Bases (2003) (quant-ph/0309120)

    Google Scholar 

  24. Massey, J.L., Mittelholzer, T.: Welch’s bound and sequence sets for code-division multiple-access systems. In: Sequences II: Methods in Communication, Security and Computer Sciences, pp. 63–78. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  25. Nyberg, K.: Differentially uniform mappings for cryptography. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  26. Pott, A.: Nonlinear functions in abelian groups and relative difference sets. Discrete Appl. Math. 138, 177–193 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Renes, J., Blume-Kohout, R., Scott, A.J., Caves, C.: Symmetric Informationally Complete Quantum Measurements. J. Math. Phys. 45, 2171–2180 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Roy, A., Scott, A.J.: Weighted complex projective 2-designs from bases: optimal state determination by orthogonal measurements (2007) (quant-ph/0703025 v2)

    Google Scholar 

  29. Stanley, R.: Enumerative Combinatorics, vol. 1. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  30. Schwinger, J.: Unitary operator bases. Proc. Nat. Acad. Sci. U.S.A. 46, 570–579 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tadey, W., Zyczkowski, K.: A concise guide to complex Hadamard matrices (2006) (quant-ph/0512154 v2)

    Google Scholar 

  32. Waldron, S.: Generalized Welch Bound Equality Sequences Are Tight Frames. IEEE Transactions on Information Theory 49(9), 2307–2309 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Welch, L.R.: Lower bounds on the maximum cross correlations of signals. IEEE Transactions on Information Theory 20(3), 397–399 (1974)

    Article  MATH  Google Scholar 

  34. Wootters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiased measurements. Annals of Physics 191, 363–381 (1989)

    Article  MathSciNet  Google Scholar 

  35. Wootters, W.K.: Picturing qubits in phase space. IBM Journal of Research and Development 48(1), 99–110 (2004)

    Article  Google Scholar 

  36. Zauner, G.: Quantendesigns – Grundzüge einer nichtkommutativen Designtheorie (in German). PhD thesis, Universität Wien (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Belovs, A., Smotrovs, J. (2008). A Criterion for Attaining the Welch Bounds with Applications for Mutually Unbiased Bases. In: Calmet, J., Geiselmann, W., Müller-Quade, J. (eds) Mathematical Methods in Computer Science. Lecture Notes in Computer Science, vol 5393. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89994-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89994-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89993-8

  • Online ISBN: 978-3-540-89994-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics