Skip to main content

Abstract

The transport of payload into space, either suborbital, orbital or superorbital and its return to the Earth’s surface, is known to require the development and construction of suitable vehicles which are able to withstand the very severe thermal and mechanical (pressure and shear stress) loads encountered during such a mission. In the early days of space exploration, the designers had the feeling that the vehicle shapes should be as simple and compact as possible. So, capsules and probes as the most important types of non-winged re-entry vehicles (RV-NW) were born.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smith, A.J.: Entry and Vehicle Design Considerations. Capsule Aerothermodynamics, AGARD-R-808, Paper 4 (1997)

    Google Scholar 

  2. Walberg, G.D.: A Survey of Aeroassisted Orbit Transfer. J. of Spacecraft 22(1), 3–18 (1985)

    Article  Google Scholar 

  3. Charbonnier, J.M., Fraysse, H., Verant, J.L., Traineau, J.C., Pot, T., Masson, A.: Aerothermodynamics of the Mars Premier Orbiter in Aerocapture Configuration. In: Proceedings 2nd Int. Symp. on Atmospheric Re-entry Vehicles and Systems, Arcachon, France (2001)

    Google Scholar 

  4. Walberg, G.D., Siemers, P.M., Calloway, R.L., Jones, J.J.: The Aeroassist Flight Experiment. In: IAF Conference, Paper No. IAF-87-197, Brighton, England (1987)

    Google Scholar 

  5. Williams, L.J., Putnam, T.W., Morris, R.: Aeroassist Key to Returning from Space and the Case for AFE. Capsule Aerothermodynamics, AGARD-R-808, Paper 13 (1997)

    Google Scholar 

  6. Regan, F.J.: Re-entry Vehicle Dynamics. AIAA Education Series, New York, N.Y (1984)

    Google Scholar 

  7. Bertin, J.J.: Hypersonic Aerothermodynamics. AIAA Education Series, Washington, D.C. (1994)

    Google Scholar 

  8. Gupta, R.N., Moss, J.N., Price, J.M.: Assessment of Thermochemical Nonequilibrium and Slip Effects for Orbital Re-entry Experiment (OREX). AIAA-Paper 96-1859 (1996)

    Google Scholar 

  9. Paulat, J.C.: Atmospheric Re-entry Demonstrator Post Flight Analysis – Aerdynamics. In: Proceedings 2nd Int. Symp. on Atmospheric Re-entry Vehicles and Systems, Arcachon, France (2001)

    Google Scholar 

  10. Yamamoto, Y., Yoshioka, M.: CFD and FEM Coupling Analysis of OREX Aerothermodynamic Flight Data. AIAA-Paper 95-2087 (1995)

    Google Scholar 

  11. Murakami, K., Fujiwara, T.: A Hypersonic Flowfield Around a Re-entry Body Including Detailed Base Flow. ESA-SP-367 (1995)

    Google Scholar 

  12. Rumynski, A.N., Murzinov, I.N., Ivanov, N.M., Kazakov, M.N., Sobolevsky, V.G., Finchenko, V.S.: Comparative Multidisciplinary Analysis of Vehicles Intended for Descent on to the Earth Surface with the Mars Ground Samples. ESA-SP-487 (2002)

    Google Scholar 

  13. Way, D.W., Powell, R.W., Edquist, K.T., Masciarelli, J.P., Starr, B.R.: Aerocapture Simulation and Performance for the Titan Explorer Mission. AIAA-Paper 2003-4951 (2003)

    Google Scholar 

  14. Baillion, M., Pallegoix, J.F.: HUYGENS Probe Aerothermodynamics. AIAA-Paper 97-2476 (1997)

    Google Scholar 

  15. Baillion, M.: Aerothermodynamic Requirements and Design of the HUYGENS Probe. Capsule Aerothermodynamics, AGARD-R-808 (1997)

    Google Scholar 

  16. Burnell, S.I., Liever, P., Smith, A.J., Parnaby, G.: Prediction of the BEAGLE2 Static Aerodynamic Coefficients. In: Proceedings 2nd Int. Symp. on Atmospheric Re-entry Vehicles and Systems, Arcachon, France (2001)

    Google Scholar 

  17. Smith, A.J., Parnaby, G., Matthews, A.J., Jones, T.V.: Aerothermodynamic Environment of the BEAGLE2 Entry Capsule. ESA-SP-487 (2002)

    Google Scholar 

  18. Paulat, J.C., Baillion, M.: Atmospheric Re-entry Demonstrator Aerodynamics. In: Proceedings 1st Int. Symp. on Atmospheric Re-entry Vehicles and Systems, Arcachon, France (1999)

    Google Scholar 

  19. Moseley, W.C., Martino, J.C.: APOLLO Wind Tunnel Testing Programme – Historical Development of General Configurations. NASA TN D-3748 (1966)

    Google Scholar 

  20. Bertin, J.J.: The Effect of Protuberances, Cavities, and Angle of Attack on the Wind Tunnel Pressure and Heat Transfer Distribution for the APOLLO Command Module. NASA TM X-1243 (1966)

    Google Scholar 

  21. Blanchet, D., Kilian, J.M., Rives, J.: Crew Transport Vehicle-Phase B, Aerodynamic Data Base. CTV-Programme, HV-TN-8-10062-AS, Aerospatiale (1997)

    Google Scholar 

  22. Moseley, W.C., Moore, R.H., Hughes, J.E.: Stability Characteristics of the APOLLO Command Module. NASA TN D-3890 (1967)

    Google Scholar 

  23. Tran, P.: ARD Aerothermal Environment. In: Proceedings 1st Int. Symp. on Atmospheric Re-entry Vehicles and Systems, Arcachon, France (1999)

    Google Scholar 

  24. Ivanov, N.M.: Catalogue of Different Shapes for Unwinged Re-entry Vehicles. Final report, ESA Contract 10756/94/F/BM (1994)

    Google Scholar 

  25. Weiland, C.: Crew Transport Vehicle Phase A, Aerodynamics and Aerothermodynamics. CTV-Programme, HV-TN-3100-X05-DASA, Dasa, MĂ¼nchen/Ottobrunn, Germany (1995)

    Google Scholar 

  26. Marzano, A., Solazzo, M., Sansone, A., Capuano, A., Borriello, G.: Aerothermodynamic Development of the CARINA Re-entry Vehicel: CFD Analysis and Experimental Tests. ESA-SP-318 (1991)

    Google Scholar 

  27. Solazzo, M., Sansone, A., Gasbarri, P.: Aerodynamic Characterization of the CARINA Re-entry Module in the Low Supersonic Regimes. ESA-SP-367 (1995)

    Google Scholar 

  28. Lee, D.B., Bertin, J.J., Goodrich, W.D.: Heat Transfer Rate and Pressure Measurements Obtained During APOLLO Orbital Entries. NASA TN D-6028 (1970)

    Google Scholar 

  29. Lee, D.B., Goodrich, W.D.: The Aerothermodynamic Environment of the APOLLO Command Module During Superorbital Entry. NASA TN D-6792 (1972)

    Google Scholar 

  30. Bouslog, S.A., An, M.Y., Wang, K.C., Tam, L.T., Caram, J.M.: Two Layer Convective Heating Prediction Procedures and Sensitivities for Blunt Body Re-entry Vehicles. AIAA-Paper 93-2763 (1993)

    Google Scholar 

  31. Walpot, L.M.G.: Numerical Analysis of the ARD Capsule in S4 Wind Tunnel. ESA-SP-487 (2002)

    Google Scholar 

  32. Baillion, M., Tran, P., Caillaud, J.: Aerodynamics, Aerothermodynamics and Flight Qualities. ARCV Programme, ACRV-A-TN 1.2.3.-AS, Aerospatiale (1993)

    Google Scholar 

  33. Rochelle, W.C., Ting, P.C., Mueller, S.R., Colovin, J.E., Bouslog, S.A., Curry, D.M., Scott, C.D.: Aerobrake Heating Rate Sensitivity Study for the Aeroassist Flight Experiments. AIAA Paper, 89-1733 (1989)

    Google Scholar 

  34. Rousseau, S., Fraysse, H.: Study of the Mars Sample Return Orbiter Aerocapture Phase. In: Proceedings 2nd Int. Symp. on Atmospheric Re-entry Vehicles and Systems, Arcachon, France (2001)

    Google Scholar 

  35. Davies, C.B., Park, C.: Aerodynamics of Generalized Bent Biconics for Aero-Assisted, Orbital-Transfer Vehicles. J. of Spacecraft 22(2), 104–111 (1985)

    Article  Google Scholar 

  36. Weiland, C., Haidinger, F.A.: Entwurf von Kapseln und deren aerothermodynamische Verifikation. In: Proceedings DGLR-Fachsymposium Strömungen mit Ablösung (not published) (November 1996)

    Google Scholar 

  37. Miller, C.G., Blackstock, T.A., Helms, V.T., Midden, R.E.: An Experimental Investigation of Control Surface Effectiveness and Real-Gas Simulation for Biconics. AIAA-Paper 83-0213 (1983)

    Google Scholar 

  38. Park, C., Yoon, S.: Calculation of Real Gas Effects on Blunt Body Trim Angles. AIAA-Paper 89-0685 (1989)

    Google Scholar 

  39. Paulat, J.C.: Synthesis of Critical Points. MSTP-Programme, Final Report, HT-SF-WP1130-087-AS, Aerospatiale (1997)

    Google Scholar 

  40. N.N.: APOLLO Data Base. Industrial communication, Aerospatiale - Deutsche Aerospace Dasa (1993)

    Google Scholar 

  41. Moseley, W.C., Moore, R.H., Hughes, J.E.: Stability Characteristics of the APOLLO Command Module. NASA TN D-3890 (1967)

    Google Scholar 

  42. Yates, L.A., Venkatapathy, E.: Trim Angle Measurement in Free-Flight Facilities. AIAA-Paper 91-1632 (1991)

    Google Scholar 

  43. Wells, W.L.: Measured and Predicted Aerodynamic Coefficients and Shock Shapes for Aeroassist Flight Experiment Configurations. NASA TP-2956 (1990)

    Google Scholar 

  44. Dieudonne, W., Spel, M.: Entry Probe Stability Analysis for the Mars Pathfinder and the Mars Premier Orbiter. ESA-SP-544 (2004)

    Google Scholar 

  45. Hagmeijer, R., Weiland, C.: Crew Transport Vehicle Phase A, External Shape Definition and Aerodynamic Data Set. CTV-Programme, HV-TN-2100-011-DASA, Dasa, MĂ¼nchen/Ottobrunn, Germany (1995)

    Google Scholar 

  46. Weilmuenster, K.J., Hamilton II, H.H.: A Comparison of Computed and Experimental Surface Pressure and Heating on 70° Sphere Cones at Angles of Attack to 20°. AIAA-Paper 86-0567 (1986)

    Google Scholar 

  47. N.N.: CTV Aerodynamics. Industrial communication, Aerospatiale - Deutsche Aerospace Dasa (1995)

    Google Scholar 

  48. N.N.: CTV Dasa Data Base. Internal industrial communication, Dasa, MĂ¼nchen/Ottobrunn, Germany (1994)

    Google Scholar 

  49. Weiland, C., Pfitzner, M.: 3D and 2D Solutions of the Quasi-Conservative Euler Equations. Lecture Notes in Physics, vol. 264, pp. 654–659. Springer, Heidelberg (1986)

    Google Scholar 

  50. Pfitzner, M., Weiland, C.: 3D Euler Solutions for Hypersonic Free-Stream Mach Numbers. AGARD-CP-428, pp. 22-1–22-14 (1987)

    Google Scholar 

  51. Pallegoix, J.F., Collinet, J.: Atmospheric Re-entry Demonstrator Post Flight Analysis – Flight Rebuilding with CFD Control. In: Proc. 2nd Int. Symp. on Atmospheric Re-entry Vehicles and Systems, Arcachon, France (2001)

    Google Scholar 

  52. Paulat, J.C.: Synthesis of Critical Points. ESA Manned Space Transportation Programme, Final Report, HT-SF-WP1130-087-AS, Aerospatiale (1997)

    Google Scholar 

  53. Baillion, M.: Blunt Bodies Dynamic Derivatives. Capsule Aerothermodynamics, AGARD-R-808, Paper 8 (1997)

    Google Scholar 

  54. Chapman, G.T., Yates, L.A.: Dynamics of Planetary Probes: Design and Testing Issues. AIAA-Paper 98-0797 (1998)

    Google Scholar 

  55. Ericsson, L.E., Reding, J.P.: Re-Entry Capsule Dynamics. J. of Spacecraft 8(6), 579–586 (1971)

    Article  Google Scholar 

  56. Whitlock, C.H., Siemers, P.M.: Parameters Influencing Dynamic Stability Characteristics of VIKING-Type Entry Configurations at Mach 1.76. J. of Spacecraft 9(7), 558–560 (1972)

    Article  Google Scholar 

  57. Karatekin, Ă–., Charbonnier, J.M., Wang, F.Y., Dehant, V.: Dynamic Stability of Atmospheric Entry Probes. ESA - SP - 544 (2004)

    Google Scholar 

  58. Wang, F.Y., Karatekin, Ö., Charbonnier, J.M.: Low-Speed Aerodynamics of a Planetary Entry Capsule. J. of Spacecraft 36(5), 659–667 (1999)

    Article  Google Scholar 

  59. Teramoto, S., Fujii, K.: Study on the Mechanism of the Instability of a Re-entry Capsule at Transonic Speeds. AIAA-Paper 2000-2603 (2000)

    Google Scholar 

  60. Brockhaus, R.: Flugregelung. Springer, Heidelberg (2001)

    Google Scholar 

  61. Schueler, C.J., Ward, L.K., Hodapp, A.E.: Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities. AGARDograph 121 (1967)

    Google Scholar 

  62. Orlik-Rueckemann, K.J.: Techniques for Dynamic Stability Testing in Wind Tunnels. AGARD-RCP-235, Paper 1 (1978)

    Google Scholar 

  63. Giese, P., Heinrich, R., Radespiel, R.: Numerical Prediction of Dynamic Derivatives for Lifting Bodies with a Navier-Stokes Solver. Notes on Numerical Fluid Mechanics, vol. 72, pp. 186–193. Vieweg Verlag (1999)

    Google Scholar 

  64. Giese, P.: Numerical Prediction of First Order Dynamic Derivatives with Help of the Flower Code. Deutsches Zentrum fĂ¼r Luft- und Raumfahrt, TETRA Programme, TET-DLR-21-TN-3201 (2000)

    Google Scholar 

  65. Hirschel, E.H.: Basics of Aerothermodynamics. Progress in Astronautics and Aeronautics, AIAA, Reston, Va, vol. 204. Springer, Heidelberg (2004)

    Google Scholar 

  66. Tran, P., Soler, J.: Atmospheric Re-entry Demonstrator; Post Flight Analysis: Aerothermo Environment. In: Proceedings 2nd Int. Symp. on Atmospheric Re-entry Vehicles and Systems, Arcachon, France (2001)

    Google Scholar 

  67. Haidinger, F.A.: Numerical Investigation of the Heat Transfer on the Front Shield of a Capsule. Deutscher Luft- und Raumfahrtkongress, DGLR - JT96 - 0137 (1996)

    Google Scholar 

  68. Wilcox, D.C.: Turbulence Modelling for CFD. DCW Industries, La Cañada, CAL, USA (1998)

    Google Scholar 

  69. Hirschel, E.H.: Evaluation of Results of Boundary-Layer Calculations with Regard to Design Aerodynamics. AGARD R-741, pp. 5-1–5-29 (1986)

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hirschel, E.H., Weiland, C. (2009). Aerothermodynamic Design Problems of Non-Winged Re-Entry Vehicles. In: Selected Aerothermodynamic Design Problems of Hypersonic Flight Vehicles. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89974-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89974-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89973-0

  • Online ISBN: 978-3-540-89974-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics