Skip to main content

Abstract

To date, there does not exist a fully reusable space transportation system with the capability of taking off horizontally or vertically and landing horizontally. As we have learned from Chapter 3, the Space Shuttle Orbiter is launched vertically like a rocket with the support of solid rocket boosters. The re-entry process into the Earth’s atmosphere consists of a gliding unpowered flight and a horizontal landing on a conventional runway. Moreover, all of the capsules, which have transported men to and from space, are single-use vehicles, launched vertically on top of rockets, Chapter 5. The landing, either on sea or on ground, is usually performed with the aid of a parachute system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hunt, J.L.: Hypersonic Airbreathing Vehicle Design (Focus on Aero-Space Plane). In: Bertin, J.J., Glowinski, R., Periaux, J. (eds.) Hypersonics. Defining the Hypersonic Environment, vol. 1, pp. 205–262. Birkhäuser, Boston (1989)

    Google Scholar 

  2. Hornung, M.: Entwurf einer luftatmenden Oberstufe und Gesamtoptimierung eines transatmosphärischen Raumtransportsystems (Design of an Airbreathing Upper Stage and Global Optimization of a Transatmospheric Space Transportation System). Doctoral thesis, Universität der Bundeswehr, Neubiberg/München, Germany (2003)

    Google Scholar 

  3. Koelle, D.E., Sacher, P.W., Grallert, H.: Deutsche Raketenflugzeuge und Raumtransporter-Projekte. Bernard und Graefe, Bonn, Germany (2007)

    Google Scholar 

  4. Steelant, J.: A European Project on Advanced Propulsion Concepts for Sustained Hypersonic Flight. In: 2nd European Conference for Aerospace Sciences (EUCASS), Brussels, Belgium, VKI (2007) ISBN 978-2-930389-27-3

    Google Scholar 

  5. Hirschel, E.H., Hornung, H.G., Oertel, H., Schmidt, W.: Aerothermodynamik von Überschallflugzeugen (Aerothermodynamics of Supersonic Aircraft). Technical Report: MBB/LKE112/HYPAC/1/A, MBB, München/Ottobrunn, Germany (1987)

    Google Scholar 

  6. Hirschel, E.H.: Aerothermodynamic Phenomena and the Design of Atmospheric Hypersonic Airplanes. In: Bertin, J.J., Periaux, J., Ballmann, J. (eds.) Advances in Hypersonics. Defining the Hypersonic Environment, vol. 1, pp. 1–39. Birkhäuser, Boston (1992)

    Google Scholar 

  7. Perrier, P.C., Hirschel, E.H.: Vehicle Configurations and Aerothermodynamic Challenges. AGARD-CP-600 3, C2-1–C2-16 (1997)

    Google Scholar 

  8. Hirschel, E.H.: Basics of Aerothermodynamics. Progress in Astronautics and Aeronautics, AIAA, Reston, Va. Springer, Heidelberg (2004)

    Google Scholar 

  9. Mack, A., Steelant, J., Togiti, V., Longo, J.M.A.: Impact of Intake Boundary Layer Turbulence on the Combustion Behaviour in a Sramjet. In: 2nd European Conference for Aerospace Sciences (EUCASS), Brussels, Belgium, VKI (2007) ISBN 978-2-930389-27-3

    Google Scholar 

  10. Williams, R.M.: National Aerospace Plane: Technology for America’s Future. Aerospace America 24(11), 18–22 (1986)

    Google Scholar 

  11. Shea, J.F.: Report of the Defense Science Board Task Force on the National Aerospace Plane (NASP). Office of the Under Secretary of Defense for Acquisition, Washington, D.C (1988)

    Google Scholar 

  12. Nicolai, L.M.: Fundamentals of Aircraft Design. METS, Inc, San Jose, Cal. (1975)

    Google Scholar 

  13. Hauck, H.: Leitkonzept SÄNGER – Referenz-Daten-Buch. Issue 1, Revision 2, Dasa, München/Ottobrunn, Germany (1993)

    Google Scholar 

  14. Staudacher, W.: Entwurfsprobleme luftatmender Raumtransportsysteme. Space Course 1995, Universität Stuttgart, Germany (1995)

    Google Scholar 

  15. Küchemann, D.: The Aerodynamic Design of Aircraft. Pergamon Press, Oxford (1978)

    Google Scholar 

  16. Anderson Jr., J.D.: Introduction to Flight, 4th edn. McGraw Hill, New York (2000)

    Google Scholar 

  17. Kuczera, H., Krammer, P., Sacher, P.W.: SÄNGER and the German Hypersonic Technology Programme. IAF Congress Montreal, Paper No. IAF-91-198 (1991)

    Google Scholar 

  18. Kraus, M.: Aerodynamische Datensätze für die Konfiguration SÄNGER 4-92 (Aerodynamic Data Set for the SÄNGER Configuration 4-92). Technical Report: DASA-LME211-TN-HYPAC-290, Dasa, München/Ottobrunn, Germany (1992)

    Google Scholar 

  19. Hirschel, E.H.: The Technology Development and Verification Concept of the German Hypersonics Technology Programme. AGARD-R-813, pp. 12-1–12-15 (1996)

    Google Scholar 

  20. Weiland, C.: Stage Separation Aerothermodynamics. AGARD-R-813, pp. 11-1–11-28 (1996)

    Google Scholar 

  21. Bayer, R., Sachs, G.: Optimal Return-to-Base Cruise of Hypersonic Carrier Vehicles. Zeitschrift für Flugwissenschaften und Weltraumforschung (ZFW) 19(1), 47–54 (1992)

    Google Scholar 

  22. Esch, H.: Kraftmessungen zur Stufentrennung am MBB-SÄNGER Konzept bei Ma = 6 im Hyperschallkanal H2K. DLR Internal Report: IB - 39113 - 90C18 (1990)

    Google Scholar 

  23. Edwards, C.L.W., Small, W.J., Weidner, J.P.: Studies of Scramjet/Air-frame Integration Techniques for Hypersonic Aircraft. AIAA-Paper 75-58 (1975)

    Google Scholar 

  24. Berens, T.M.: Thrust Vector Optimization for Hypersonic Vehicles in the Transonic Mach Number Regime. AIAA-Paper 93-5060 (1993)

    Google Scholar 

  25. Herrmann, O., Schmitz, D.: Vorläufiges “Bookkeeping”-Verfahren für Hyper-schall-Flugzeuge. MBB-FE125/124-TN-HYP-31, MBB, München/Otto-brunn, Germany (1988)

    Google Scholar 

  26. Lifka, H.: Bookkeeping-Korrekturen des Aerodynamischen Datensatzes der Längsbewegung für SÄNGER bezüglich Triebwerkseinbau. MBB-FE121-TN-HYPAC-0133, MBB, München/Ottobrunn, Germany (1990)

    Google Scholar 

  27. Lentz, S., Hornung, M., Staudacher, W.: Conceptual Design of Winged Reusable Two-Stage-To-Orbit Space Transport Systems. In: Jacob, D., Sachs, G., Wagner, S. (eds.) Basic Research and Technologies for Two-Stage-To-Orbit Vehicles, pp. 9–37. WILEY-VCH, Weinheim (2005)

    Chapter  Google Scholar 

  28. Berens, T.M., Bissinger, N.C.: Study on Forebody Precompression Effects and Inlet Entry Conditions for Hypersonic Vehicles. AIAA-Paper 96-4531 (1996)

    Google Scholar 

  29. Berens, T.M., Bissinger, N.C.: Forebody Precompression Performance of Hypersonic Flight Test Vehicles. AIAA-Paper 98-1574 (1998)

    Google Scholar 

  30. Schaber, R.: Einfluss entscheidender Triebwerksparameter auf das Leistungsverhalten eines Hyperschall-Antriebs. MTU-N94-EP-0001, MTU, Mün-chen/Karlsfeld, Germany (1994)

    Google Scholar 

  31. Hirschel, E.H.: The Technology Development and Verification Concept of the German Hypersonics Technology Programme. Dasa-LME12-HYPAC-STY-0017-A, Dasa, München/Ottobrunn, Germany (1995)

    Google Scholar 

  32. Staudacher, W., Wimbauer, J.: Design Sensitivities of Airbreathing Hypersonic Vehicles. AIAA-Paper 93-5099 (1993)

    Google Scholar 

  33. Hirschel, E.H.: The Hypersonics Technology Development and Verification Strategy of the German Hypersonics Technology Programme. AIAA-Paper 93-5072 (1993)

    Google Scholar 

  34. Rick, H., Bauer, A., Esch, T., Hollmeier, S., Kau, H.-P., Kopp, S., Kreiner, A.: Hypersonic Highly Integrated Propulsion Systems – Design and Off-Design Simulation. In: Jacob, D., Sachs, G., Wagner, S. (eds.) Basic Research and Technologies for Two-Stage-To-Orbit Vehicles, pp. 327–346. WILEY-VCH, Weinheim (2005)

    Google Scholar 

  35. Heiser, W.H., Pratt, D.T.: Hypersonic Airbreathing Propulsion. AIAA Education Series, Washington, D.C (1994)

    Google Scholar 

  36. Seddon, J., Goldsmith, E.L.: Intake Aerodynamics, 2nd edn. AIAA Education Series, Washington, D.C. (1999)

    Google Scholar 

  37. Bissinger, N.C., Schmitz, D.: Design and Wind Tunnel Testing of Intakes for Hypersonic Vehicles. AIAA-Paper 93-5042 (1993)

    Google Scholar 

  38. Fisher, S.A., Neale, M.C., Brooks, A.J.: On the Sub-Critical Stability of Variable Ramp Intakes at Mach Numbers Around 2. Aeronautical Research Council, R. and M. No. 3711, London, U.K (1972)

    Google Scholar 

  39. Reddy, D.R., Benson, T.J., Weir, L.J.: Comparison of 3-D Viscous Flow Computations of Mach 5 Inlet with Experimental Data. AIAA-Paper 90-0600 (1990)

    Google Scholar 

  40. Henckels, A., Gruhn, P.: Experimental Studies of Viscous Interaction Effects in Hypersonic Inlets and Nozzle Flow Fields. In: Jacob, D., Sachs, G., Wagner, S. (eds.) Basic Research and Technologies for Two-Stage-To-Orbit Vehicles, pp. 383–403. WILEY-VCH, Weinheim (2005)

    Google Scholar 

  41. Ferri, A., Nucci, L.M.: The Origin of Aerodynamic Instability of Supersonic Inlets at Subcritical Conditions. NACA RM L50K30 (1951)

    Google Scholar 

  42. Edney, B.: Anomalous Heat Transfer and Pressure Distributions on Blunt Bodies at Hypersonic Speeds in the Presence of an Impinging Shock. FFA Rep. 115 (1968)

    Google Scholar 

  43. Dailey, C.L.: Supersonic Diffuser Instability. J. Aeronautical Sciences 22(11) (1955)

    Google Scholar 

  44. Delery, J.M.: Shock Wave/Turbulent Boundary Layer Interaction and its Control. Progress in Aerospace Sciences 22, 209–280 (1985)

    Article  Google Scholar 

  45. Bowcutt, K.G., Anderson Jr., J.D., Capriotti, D.: Viscous Optimized Hypersonic Waveriders. AIAA-Paper 87-0272 (1987)

    Google Scholar 

  46. Küchemann, D.: Hypersonic Aircraft and Their Aerodynamic Problems. Roy. Air. Establ., Technical Memorandum No. Aero 849 (1964)

    Google Scholar 

  47. Nonweiler, T.R.F.: Aerodynamic Problems of Manned Space Vehicles. J. Roy. Aeron. Soc. 63, 521–528 (1959)

    Google Scholar 

  48. Taylor, G.I., Maccoll, J.W.: The Air Pressure on a Cone Moving at High Speeds. Proc. Roy. Soc. (A) 139, 278–311 (1933)

    Article  Google Scholar 

  49. Anderson Jr., J.D.: Modern Compressible Flow, 3rd edn. McGraw Hill, New York (2003)

    Google Scholar 

  50. Rasmussen, M.L.: Waverider Configurations Derived from Inclined Circular and Elliptic Cones. J. of Spacecraft 17(6), 537–545 (1980)

    Article  Google Scholar 

  51. Sobieczky, H., Dougherty, F.C., Jones, K.D.: Hypersonic Waverider Design from Given Shock Waves. In: Proceedings of 1st Int. Hypersonic Waverider Symposium, University of Maryland (1990)

    Google Scholar 

  52. Eggers, T., Sobieczky, H., Center, K.B.: Design of Advanced Waveriders with High Aerodynamic Efficiency. AIAA-Paper 93-5141 (1993)

    Google Scholar 

  53. Eggers, T., Radespiel, R.: Design of Waveriders. Proceedings: Space Course, Paper No. 6, Technische Universität München, Germany (1993)

    Google Scholar 

  54. Eggers, T.: Aerodynamischer Entwurf von Wellenreiter Konfigurationen für Hyperschallflugzeuge (Aerodynamic Design of Waverider Configurations for Hypersonic Aircraft). Doctoral Thesis, Technische Universität Braunschweig, Germany, DLR Forschungsbericht 1999 - 10 (1999)

    Google Scholar 

  55. Jones, K.D., Dougherty, F.C., Seebass, A.R., Sobieczky, H.: Waverider Design for Generalized Shock Geometries. AIAA-Paper 93-0774 (1993)

    Google Scholar 

  56. Cockrell, C.E., Huebner, L.D., Finley, D.B.: Aerodynamic Performance and Flow-Field Characteristics of Two Waverider-Derived Hypersonic Cruise Configurations. AIAA-Paper 95-0736 (1995)

    Google Scholar 

  57. Cockrell, C.E.: Interpretation of Waverider Performance Data Using Computational Fluid Dynamics. AIAA-Paper 93-2921 (1993)

    Google Scholar 

  58. Center, K.B.: Interactive Hypersonic Waverider design and Optimization. Ph.D. Thesis, University of Colorado, Boulder (1993)

    Google Scholar 

  59. Miller, R.W., Argrow, B.M., Center, K.B., Brauckmann, G.J., Rhode, M.N.: Experimental Verification of the Osculating Cones Method for Two Waverider Forebodies at Mach 4 and 6. AIAA-Paper 98-0682 (1998)

    Google Scholar 

  60. Hummel, D., Blaschke, R.C., Eggers, T., Strohmeyer, D.: Experimental and Numerical Investigations on Waveriders in Different Flight Regimes. In: Proceedings of 21st ICAS Congress, ICAS-98-2,1,4, Melbourne (1998)

    Google Scholar 

  61. Eggers, T., Strohmeyer, D., Nickel, H., Radespiel, R.: Aerodynamic Off-Design Behavior of Integrated Waveriders from Take-off up to Hypersonic Flight. ESA SP-367 (1995)

    Google Scholar 

  62. Waibel, M.: Theoretische Untersuchungen über Stoss-Grenzschicht Wechselwirkungen an einem M  ∞ = 8 Wellenreiter (Theoretical Investigations of Shock/ Boundary Layer Interactions at a M  ∞ = 8 Waverider). Diploma Thesis, DLR Fotrschungsbericht 94-12, Germany (1994)

    Google Scholar 

  63. Hirschel, E.H.: Vortex Flows: Some General Properties, and Modelling, Configurational and Manipulation Aspects. AIAA-Paper 96-2514 (1996)

    Google Scholar 

  64. Hirschel, E.H.: Evaluation of Results of Boundary-Layer Calculations with Regard to Design Aerodynamics. AGARD-R-741, pp. 6-1–6-29 (1986)

    Google Scholar 

  65. Peake, D.J., Tobak, M.: Three-Dimensional Interaction and Vortical Flows with Emphasis on High Speeds. AGARDograph 252 (1980)

    Google Scholar 

  66. Hahne, D.E.: Evaluation of the Low-Speed Stability and Control Characteristics of a Mach 5.5 Waverider Concept. NASA TM-4756 (1997)

    Google Scholar 

  67. Eggers, T., Strohmeyer, D.: Design of High L/D Vehicles Based on Hypersonic Waveriders. Future Aerospace Technology in the Service of the Alliance, AGARD-CP-600, Vol. 3, Paper C18 (1997)

    Google Scholar 

  68. Strohmeyer, D., Eggers, T., Haupt, M.: Waverider Aerodynamics and Preliminary Design for Two-Stage-to-Orbit Missions, Part 1. J. of Spacecraft 35(4), 450–458 (1998)

    Article  Google Scholar 

  69. Strohmeyer, D., Eggers, T., Heinze, W., Bardenhagen, A.: Planform Effects on the Aerodynamics of Waveriders for TSTO Missions. AIAA-Paper 96-4544 (1996)

    Google Scholar 

  70. Eggers, T., Radespiel, R., Waibel, M., Hummel, D.: Flow Phenomena of Hypersonic Waveriders and Validation of Design Methods. AIAA-Paper 93-5045 (1993)

    Google Scholar 

  71. Strohmeyer, D.: Lateral Stability Derivatives for Osculating Cones Waveriders in Sub- and Transonic Flow. AIAA-Paper 98-1618 (1998)

    Google Scholar 

  72. Heinze, W., Bardenhagen, A.: Waverider Aerodynamics and Preliminary Design for Two-Stage-to-Orbit Missions, Part 2. J. of Spacecraft 35(4), 459–466 (1998)

    Article  Google Scholar 

  73. Haupt, M., Kossira, H., Radespiel, R.: Analyse von aerodynamisch belasteten Flügelvorderkanten mit der Methode der Fluid-Struktur-Kopplung. DGLR Jahrestagung, Paper DGLR-JT95 - 115, Annual Book No. 3 (1995)

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hirschel, E.H., Weiland, C. (2009). Aerothermodynamic Design Problems of Winged Airbreathing Vehicles. In: Selected Aerothermodynamic Design Problems of Hypersonic Flight Vehicles. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89974-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89974-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89973-0

  • Online ISBN: 978-3-540-89974-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics