Skip to main content

Abstract

In this chapter, we consider selected aerothermodynamic design problems of winged re-entry vehicles (RV-W’s, Section 1.1). Of these vehicles the Space Shuttle Orbiter so far is the only operational vehicle. The other ones are conceptual studies or projects, which have reached different degrees of maturity.

RV-W’s are either launched vertically with the help of rockets or, in the case of TSTO systems, horizontally from a carrier vehicle, the lower stage of the system. Other launch modes have been considered, viz., horizontal launch froma sled. Return to the Earth surface in any case is made with an unpowered gliding flight, followed by the horizontal landing on a runway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hirschel, E.H.: Basics of Aerothermodynamics. Progress in Astronautics and Aeronautics, AIAA, Reston, Va, vol. 204. Springer, Heidelberg (2004)

    Google Scholar 

  2. Hirschel, E.H.: Hypersonic Aerodynamics. In: Space Course 1993, vol. 1, pp. 2-1– 2-17. Technical University München, Germany (1993)

    Google Scholar 

  3. Sacher, P.W., Kunz, R., Staudacher, W.: The German Hypersonic Experimental Aircraft Concept. In: 2nd AIAA International Aerospaceplane Conference, Orlando, Florida (1990)

    Google Scholar 

  4. Hirschel, E.H., Grallert, H., Lafon, J., Rapuc, M.: Acquisition of an Aerodynamic Data Base by Means of a Winged Experimental Reentry Vehicle. Zeitschrift für Flugwissenschaften und Weltraumforschung (ZFW) 16(1), 15–27 (1992)

    Google Scholar 

  5. Abgrall, R., Desideri, J.-A., Glowinski, R., Mallet, M., Periaux, J. (eds.): Hypersonic Flows for Reentry Problems, vol. III. Springer, Berlin (1992)

    Google Scholar 

  6. Lyubimov, A.N., Rusanow, V.V.: Gas Flows Past Blunt Bodies. NASA TT-F-714, Part II (1973)

    Google Scholar 

  7. Weilmuenster, K.J., Gnoffo, P.A., Greene, F.A.: Navier-Stokes Simulations of Orbiter Aerodynamic Characteristics. In: Throckmorton, D.A. (ed.) Orbiter Experiments (OEX) Aerothermodynamics Symposium. NASA CP-3248, Part 1, pp. 447–494 (1995)

    Google Scholar 

  8. Edney, B.: Anomalous Heat Transfer and Pressure Distributions on Blunt Bodies at Hypersonic Speeds in the Presence of an Impinging Shock. FFA Rep. 115 (1968)

    Google Scholar 

  9. Brück, S., Radespiel, R.: Navier-Stokes Solutions for the Flow Around the HALIS Configuration – F4 Wind Tunnel Conditions – DLR Internal Report, IB 129 - 96/2 (1996)

    Google Scholar 

  10. Hartmann, G., Menne, S.: Winged Aerothermodynamic Activities. MSTP Report, H-TN-E33.3-004-DASA, Dasa, München/Ottobrunn, Germany (1996)

    Google Scholar 

  11. Riedelbauch, S.: Aerothermodynamische Eigenschaften von Hyperschallströmungen über strahlungsadiabate Oberflächen (Aerothermodynamic Properties of Hypersonic Flows past Radiation-Cooled Surfaces). Doctoral Thesis, Technische Universität München, Germany (1991) (Also DLR-FB 91-42, 1991)

    Google Scholar 

  12. Weiland, C.: Synthesis of Results for Problem VII, Delta Wing. In: Abgrall, R., Desideri, J.-A., Glowinski, R., Mallet, M., Periaux, J. (eds.) Hypersonic Flows for Reentry Problems, vol. III, pp. 1014–1027. Springer, Heidelberg (1992)

    Google Scholar 

  13. Liepmann, H.W., Roshko, A.: Elements of Gasdynamics. Dover Publications, Mineola (2002)

    Google Scholar 

  14. Griffith, B.F., Maus, J.R., Best, J.T.: Explanation of the Hypersonic Longitudinal Stability Problem – Lessons Learned. In: Arrington, J.P., Jones, J.J. (eds.) Shuttle Performance: Lessons Learned. NASA CP-2283, Part 1, pp. 347–380 (1983)

    Google Scholar 

  15. Becker, J.V.: The X-15 Project. Astronautics and Aeronautics 2, 52–61 (1964)

    Google Scholar 

  16. McLellan, C.H.: A Method for Increasing the Effectiveness of Stabilizing Surfaces at High Supersonic Mach Numbers. NACA RM L54F21 (1954)

    Google Scholar 

  17. Arrington, J.P., Jones, J.J. (eds.): Shuttle Performance: Lessons Learned. NASA CP-2283 (1983)

    Google Scholar 

  18. Throckmorton, D.A. (ed.): Orbiter Experiments (OEX) Aerothermodynamics Symposium. NASA CP-3248 (1995)

    Google Scholar 

  19. Martin, L.: Aerodynamic Coefficient Measurements, Body Flap Efficiency and Oil Flow Visualization on an Orbiter Model at Mach 10 in the ONERA S4 Wind Tunnel. ONERA Report No. 8907 GY 400G (1995)

    Google Scholar 

  20. N.N.: Aerodynamic Design Data Book – Orbiter Vehicle STS-1. Rockwell International, USA (1980)

    Google Scholar 

  21. Iliff, K.W., Shafer, M.F.: Extraction of Stability and Control Derivatives from Orbiter Flight Data. In: Throckmorton, D.A. (ed.) Orbiter Experiments (OEX) Aerothermodynamics Symposium. NASA CP-3248, Part 1, pp. 299–344 (1995)

    Google Scholar 

  22. Hartmann, G., Menne, S., Schröder, W.: Uncertainties Analysis/Critical Points. HERMES Report, H-NT-1-0329-DASA, Dasa, Mn̈chen/Ottobrunn, Germany (1994)

    Google Scholar 

  23. Courty, J.C., Rapuc, M., Vancamberg, P.: Aerodynamic and Thermal Data Bases. HERMES Report, H-NT-1-1206-AMD, Aviation M. Dassault, St. Cloud, France (1991)

    Google Scholar 

  24. N.N.: HOPE-X Data Base. Industrial communication, European Aeronautic Defence and Space Company, EADS/Japanese Space Agency, NASDA (1998)

    Google Scholar 

  25. Tsujimoto, T., Sakamoto, Y., Akimoto, T., Kouchiyama, J., Ishimoto, S., Aoki, T.: Aerodynamic Characteristics of HOPE-X Configuration with Twin Tails. AIAA-Paper 2001-1827 (2001)

    Google Scholar 

  26. Pamadi, B.N., Brauckmann, G.J., Ruth, M.J., Furhmann, H.D.: Aerodynamic Characteristics, Database Development and Flight Simulation of the X-34 Vehicle. AIAA-Paper 2000-0900 (2000)

    Google Scholar 

  27. http://www.dfrc.nasa.gov/gallery

  28. Pamadi, B.N., Brauckmann, G.J.: Aerodynamic Characteristics and Development of the Aerodynamic Database of the X-34 Reusable Launch Vehicle. In: Proc. 1st Int. Symp. on Atmospheric Re-entry Vehicles and Systems, Arcachon, France (1999)

    Google Scholar 

  29. Brauckmann, G.J.: X-34 Vehicle Aerodynamic Characteristics. J. of Spacecraft and Rockets 36(2), 229–239 (1999)

    Article  Google Scholar 

  30. Tarfeld, F.: Measurement of Direct Dynamic Derivatives with the Forced-Oscillation Technique on the Reentry Vehicle X-38 in Supersonic Flow. Deutsches Zentrum für Luft- und Raumfahrt DLR, TETRA Programme, TET-DLR-21-TN-3104 (2001)

    Google Scholar 

  31. Labbe, S.G., Perez, L.F., Fitzgerald, S., Longo, J.M.A., Molina, R., Rapuc, M.: X-38 Integrated Aero- and Aerothermodynamic Activities. Aerospace Science and Technology 3, 485–493 (1999)

    Article  Google Scholar 

  32. N.N.: X-38 Data Base. Industrial communication, Dassault Aviation – NASA – European Aeronautic Defence and Space Company, EADS (1999)

    Google Scholar 

  33. Behr, R., Weber, C.: Aerothermodynamics – Euler Computations. X-CRV Rep., HT-TN-002/2000-DASA, Dasa, München/Ottobrunn, Germany (2000)

    Google Scholar 

  34. Aiello, M., Stojanowski, M.: X-38 CRV, S3MA Windtunnel Test Results. X-CRV Rep., DGT No. 73442, Aviation M. Dassault, St. Cloud, France (1998)

    Google Scholar 

  35. Weiland, C.: X-38 CRV, S4MA Windtunnel Test Results. Dasa, X-CRV Report, HT-TN-001/99-DASA, Dasa, München/Ottobrunn, Germany (1999)

    Google Scholar 

  36. Görgen, J.: CFD Analysis of X-38 Free Flight. TETRA Programme, TET-DASA-21-TN-2401, Dasa, München/Ottobrunn, Germany (1999)

    Google Scholar 

  37. Daimler-Benz Aerospace Space Infrastructure, FESTIP System Study Proceedings. FFSC-15 Suborbital HTO-HL System Concept Family. EADS, München/Ottobrunn, Germany (1999)

    Google Scholar 

  38. N.N.: PHOENIX Data Base. Internal industrial communication, EADS, München/Ottobrunn, Germany (2004)

    Google Scholar 

  39. Häberle, J.: Einfluss heisser Oberflächen auf aerothermodynamische Flugeigenschaften von HOPPER/PHOENIX (Influence of Hot Surfaces on Aerothermodynamic Flight Properties of HOPPER/PHOENIX). Diploma Thesis, Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Germany (2004)

    Google Scholar 

  40. Borrelli, S., Marini, M.: The Technology Program in Aerothermodynamics for PRORA-USV. ESA-SP-487, pp. 37–48 (2002)

    Google Scholar 

  41. Rufolo, G.C., Roncioni, P., Marini, M., Votta, R., Palazzo, S.: Experimental and Numerical Aerodynamic Integration and Aerodatabase Development for the PRORA-USV-FTB-1 Reusable Vehicle. AIAA-Paper 2006-8031 (2006)

    Google Scholar 

  42. Behr, R.: CFD Computations. Private communications, EADS, München/ Ottobrunn, Germany (2007)

    Google Scholar 

  43. Trella, M.: Introduction to the Hypersonic Phenomena of HERMES. In: Bertin, J.J., Glowinski, R., Periaux, J. (eds.) Hypersonics. Defining the Hypersonic Environment, vol. 1, pp. 67–91. Birkhäuser, Boston (1989)

    Google Scholar 

  44. Etkin, B., Reid, L.D.: Dynamics of Flight Mechanics: Performance, Stability and Control. John Wiley & Sons, New York (2000)

    Google Scholar 

  45. Hoey, R.G.: AFFTC Overview of Orbiter-Reentry Flight-Test Results. In: Arrington, J.P., Jones, J.J. (eds.) Shuttle Performance: Lessons Learned. NASA CP-2283, Part 2, pp. 1303–1334 (1983)

    Google Scholar 

  46. Woods, W.C., Watson, R.D.: Shuttle Orbiter Aerodynamics – Comparison Between Hypersonic Ground-Facility Results and STS-1 Flight-Derived Results. In: Throckmorton, D.A. (ed.) Orbiter Experiments (OEX) Aerothermodynamics Symposium. NASA CP-3248, Part 1, pp. 371–409 (1995)

    Google Scholar 

  47. Williams, S.D.: Columbia, the First Five Flights Entry Heating Data Series, an Overview, vol. 1, NASA CR-171 820 (1984)

    Google Scholar 

  48. Romere, P.O.: Orbiter (Pre STS-1) Aerodynamic Design Data Book Development and Methodology. In: Throckmorton, D.A. (ed.) Orbiter Experiments (OEX) Aerothermodynamics Symposium. NASA CP-3248, Part 1, pp. 249–280 (1995)

    Google Scholar 

  49. Woods, W.C., Arrington, J.P., Hamilton II, H.H.: A Review of Preflight Estimates of Real-Gas Effects on Space Shuttle Aerodynamic Characteristics. In: Arrington, J.P., Jones, J.J. (eds.) Shuttle Performance: Lessons Learned. NASA CP-2283, Part 1, pp. 309–346 (1983)

    Google Scholar 

  50. Neyland, V.Y.: Air Dissociation Effects on Aerodynamic Characteristics of an Aerospace Plane. Journal of Aircraft 30(4), 547–549 (1993)

    Article  Google Scholar 

  51. Weilmuenster, K.J., Gnoffo, P.A., Greene, F.A.: Navier-Stokes Simulations of Orbiter Aerodynamic Characteristics Including Pitch Trim and Bodyflap. Journal of Spacecraft and Rockets 31(5), 355–366 (1994)

    Article  Google Scholar 

  52. Paulson Jr., J.W., Brauckmann, G.J.: Recent Ground-Facility Simulations of Space Shuttle Orbiter Aerodynamics. In: Throckmorton, D.A. (ed.) Orbiter Experiments (OEX) Aerothermodynamics Symposium. NASA CP-3248, Part 1, pp. 411–445 (1995)

    Google Scholar 

  53. Prabhu, D.K., Papadopoulos, P.E., Davies, C.B., Wright, M.J.B., McDaniel, R.D., Venkatapathy, E., Wercinski, P.F.: Shuttle Orbiter Contingency Abort Aerodynamics, II: Real-Gas Effects and High Angles of Attack. AIAA-Paper 2003-1248 (2003)

    Google Scholar 

  54. Koppenwallner, G.: Low Reynolds Number Influence on Aerodynamic Performance of Hypersonic Vehicles. AGARD-CP-428, pp. 11-1–11-14 (1987)

    Google Scholar 

  55. Brauckmann, G.J., Paulson Jr., J.W., Weilmuenster, K.J.: Experimental and Computational Analysis of Shuttle Orbiter Hypersonic Trim Anomaly. Journal of Spacecraft and Rockets 32(5), 758–764 (1995)

    Article  Google Scholar 

  56. Goodrich, W.D., Derry, S.M., Bertin, J.J.: Shuttle Orbiter Boundary-Layer Transition: A Comparison of Flight and Wind-Tunnel Data. AIAA-Paper 83-0485 (1983)

    Google Scholar 

  57. Boeing, Human Space Flight and Exploration, Huntington Beach, CA. Operational Aerodynamic Data Book. Boeing Document STS85-0118 CHG 9 (2000)

    Google Scholar 

  58. Hayes, W.D., Probstein, R.F.: Hypersonic Flow Theory. Inviscid Flows, vol. 1. Academic Press, New York (1966)

    MATH  Google Scholar 

  59. Oswatitsch, K.: Ähnlichkeitsgesetze für Hyperschallströmung. ZAMP II, 249–264 (1951); Similarity Laws for Hypersonic Flow. Royal Institute of Technology, Stockholm, Sweden, KTH-AERO TN 16 (1950)

    Article  MathSciNet  Google Scholar 

  60. Wüthrich, S., Sawley, M.L., Perruchoud, G.: The Coupled Euler/ Boundary-Layer Method as a Design Tool for Hypersonic Re-Entry Vehicles. Zeitschrift für Flugwissenschaften und Weltraumforschung (ZFW) 20(3), 137–144 (1996)

    Google Scholar 

  61. Adams, J.C., Martindale, W.R., Mayne, A.W., Marchand, E.O.: Real Gas Scale Effects on Hypersonic Laminar Boundary-Layer Parameters Including Effects of Entropy-Layer Swallowing. AIAA-Paper 76-358 (1976)

    Google Scholar 

  62. Weiland, C.: Zwei- und dreidimensionale Umströmungen stumpfer Körper unter Berücksichtigung schallnaher Überschallströmungen. Zeitschrift für Flugwissenschaften und Weltraumforschung (ZFW) 24(3), 237–245 (1976); Translation Two and Three-Dimensional Flows Past Blunt Bodies with Special Regard of Supersonic Flow Close to M = 1. NASA TTF-17406 (1977)

    MATH  Google Scholar 

  63. Pfitzner, M., Weiland, C.: 3-D Euler Solutions for Hypersonic Mach Numbers. AGARD-CP-428, pp. 22-1–22-14 (1987)

    Google Scholar 

  64. Kliche, D.: Personal communication. München, Germany (2008)

    Google Scholar 

  65. Ames Research Staff. Equations, Tables, and Charts for Compressible Flow. NACA R-1135 (1953)

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hirschel, E.H., Weiland, C. (2009). Aerothermodynamic Design Problems of Winged Re-Entry Vehicles. In: Selected Aerothermodynamic Design Problems of Hypersonic Flight Vehicles. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89974-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89974-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89973-0

  • Online ISBN: 978-3-540-89974-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics