Skip to main content

Introduction

  • Chapter

Abstract

When studying papers discussing aspects of the aerodynamic shape definition process of the Space Shuttle Orbiter, see, e.g., [1], one is confronted with a host of different methods, correlations, simulation tools, etc. which were employed. At that time the discrete numerical methods of aerodynamics and aerothermodynamics were just beginning to appear. In the meantime very large algorithmic achievements and fantastic developments in computer speed and storage, and in general in the information technologies, have happened and change now profoundly the aerothermodynamic design processes, but also the scientific work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Woods, W.C., Arrington, J.P., Hamilton II, H.H.: A Review of Preflight Estimates of Real-Gas Effects on Space Shuttle Aerodynamic Characteristics. In: Arrington, J.P., Jones, J.J. (eds.) Shuttle Performance: Lessons Learned. NASA CP-2283, Part 1, pp. 309–346 (1983)

    Google Scholar 

  2. Hirschel, E.H.: Basics of Aerothermodynamics. Progress in Astronautics and Aeronautics, AIAA, Reston, Va, vol. 204. Springer, Heidelberg (2004)

    Google Scholar 

  3. Bushnell, D.M.: Hypersonic Ground Test Requirements. In: Lu, F.K., Marren, D.E. (eds.) Advanced Hypersonic Test Facilities. Progress in Astronautics and Aeronautics, AIAA, Reston, Va, vol. 198, pp. 1–15 (2002)

    Google Scholar 

  4. Hirschel, E.H.: Present and Future Aerodynamic Process Technologies at DASA Military Aircraft. In: ERCOFTAC Industrial Technology Topic Meeting, Florence, Italy (1999)

    Google Scholar 

  5. Vos, J.B., Rizzi, A., Darracq, D., Hirschel, E.H.: Navier-Stokes Solvers in European Aircraft Design. Progress in Aerospace Sciences 38, 601–697 (2002)

    Article  Google Scholar 

  6. Hirschel, E.H.: Towards the Virtual Product in Aircraft Design? In: Periaux, J., Champion, M., Gagnepain, J.-J., Pironneau, O., Stouflet, B., Thomas, P. (eds.) Fluid Dynamics and Aeronautics New Challenges. CIMNE Handbooks on Theory and Engineering Applications of Computational Methods, Barcelona, Spain, pp. 453–464 (2003)

    Google Scholar 

  7. Neumann, R.D.: Defining the Aerothermodynamic Methodology. In: Bertin, J.J., Glowinski, R., Periaux, J. (eds.) Hypersonics. Defining the Hypersonic Environment, vol. 1, pp. 125–204. Birkhäuser, Boston (1989)

    Google Scholar 

  8. Hunt, J.L.: Hypersonic Airbreathing Vehicle Design (Focus on Aero-Space Plane). In: Bertin, J.J., Glowinski, R., Periaux, J. (eds.) Hypersonics. Defining the Hypersonic Environment, vol. 1, pp. 205–262. Birkhäuser, Boston (1989)

    Google Scholar 

  9. Hammond, W.E.: Design Methodologies for Space Transportation Systems. Education Series, AIAA, Reston, Va (2001)

    Google Scholar 

  10. Hirschel, E.H.: CFD - from Solitary Tools to Components of the Virtual Product. In: Proceedings Basel World CFD User Days 1996. Third World Conference in Applied Computational Fluid Dynamics, Freiburg, Germany, pp. 24.1–24.9 (1996)

    Google Scholar 

  11. Arrington, J.P., Jones, J.J. (eds.): Shuttle Performance: Lessons Learned. NASA CP-2283 (1983)

    Google Scholar 

  12. Throckmorton, D.A. (ed.): Orbiter Experiments (OEX) Aerothermodynamics Symposium. NASA CP-3248 (1995)

    Google Scholar 

  13. Woods, W.C., Watson, R.D.: Shuttle Orbiter Aerodynamics – Comparison Between Hypersonic Ground-Facility Results and STS-1 Flight-Derived Results. In: Throckmorton, D.A. (ed.) Orbiter Experiments (OEX) Aerothermodynamics Symposium. NASA CP-3248, Part 1, pp. 371–409 (1995)

    Google Scholar 

  14. Lu, F.K., Marren, D.E. (eds.): Advanced Hypersonic Test Facilities. Progress in Astronautics and Aeronautics, AIAA, Reston, Va, vol. 198 (2002)

    Google Scholar 

  15. Haney, J.W.: Orbiter (Pre STS-1) Aeroheating Design Data Base Development Methodology – Comparison of Wind Tunnel and Flight Test Data. In: Throckmorton, D.A. (ed.) Orbiter Experiments (OEX) Aerothermodynamics Symposium. NASA CP-3248, Part 2, pp. 607–675 (1995)

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hirschel, E.H., Weiland, C. (2009). Introduction. In: Selected Aerothermodynamic Design Problems of Hypersonic Flight Vehicles. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89974-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89974-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89973-0

  • Online ISBN: 978-3-540-89974-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics