Skip to main content

Abstract

Turbulence modeling and the numerical discretization of the Navier- Stokes equations are strongly coupled in large-eddy simulations. The truncation error of common approximations for the convective terms can outweigh the effect of a physically sound subgrid-scale model. The subject of this thesis is the analysis and the control of local truncation errors in large-eddy simulations. We show that physical reasoning can be incorporated into the design of discretization schemes. Using systematic procedures, a nonlinear discretization method has been developed where numerical and turbulence-theoretical modeling are fully merged. The truncation error itself functions as an implicit turbulence model accurately representing the effects of unresolved scales. Various applications demonstrate the efficiency and reliability of the new method as well as the superiority of an holistic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, N.A., Hickel, S., Franz, S.: Implicit subgrid-scale modeling by adaptive deconvolution. J. Comp. Phys. 200, 412–431 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Almeida, G.P., Durao, D.F.G., Heitor, M.V.: Wake flows behind two dimensional model hills. Exp. Thermal and Fluid Science 7, 87–101 (1993)

    Article  Google Scholar 

  3. Breuer, M.: New reference data for the hill flow test case (2005), http://www.hy.bv.tum.de/DFG-CNRS/

  4. Castillo, L., George, W.K.: Similarity analysis for turbulent boundary layer with pressure gradient: Outerflow. AIAA Journal 39(1), 41–47 (2001)

    Article  Google Scholar 

  5. Castillo, L.: XiaWang, and W. K. George. Separation criterion for turbulent boundary layers via similarity analysis. Journal of Fluids Engineering 126(1), 297–303 (2004)

    Article  Google Scholar 

  6. Chollet, J.-P.: Two-point closures as a subgrid-scale modeling tool for large-eddy simulations. In: Durst, F., Launder, B. (eds.) Turbulent Shear Flows IV, pp. 62–72. Springer, Heidelberg (1984)

    Google Scholar 

  7. Clauser, F.H.: Turbulent boundary layers in adverse pressure gradient. J. Aeronaut. Sci. 21, 91–108 (1954)

    Google Scholar 

  8. Comte-Bellot, G., Corrsin, S.: Simple Eulerian time correlation of full and narrow-band velocity signals in grid-generated ‘isotropic’ turbulence. J. Fluid Mech. 48, 273–337 (1971)

    Article  Google Scholar 

  9. del Álamo, J., Jiménez, J., Zandonade, P., Moser, R.: Scaling of the energy spectra of turbulent channels. J. Fluid Mech. 500, 135–144 (2004)

    Article  MATH  Google Scholar 

  10. Fröhlich, J., Mellen, C., Rodi, W., Temmerman, L., Leschziner, M.: Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions. J. Fluid Mech. 526, 19–66 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3, 1760–1765 (1991)

    Article  MATH  Google Scholar 

  12. Hickel, S., Adams, N.A.: Efficient implementation of nonlinear deconvolution methods for implicit large-eddy simulation. In: Nagel, W., Jäger, W., Resch, M. (eds.) High Performance Computing in Science and Engineering. Transactions of the High Performance Computing Center, Stuttgart (HLRS), pp. 293–306. Springer, Heidelberg (2006)

    Google Scholar 

  13. Hickel, S., Adams, N.A.: On implicit subgrid-scale modeling in wall-bounded flows. Phys. Fluids 19, 105106 (2007)

    Article  Google Scholar 

  14. Hickel, S., Adams, N.A.: Implicit LES applied to zero-pressure-gradient and adverse-pressure-gradient boundary-layer turbulence. Int. J. Heat and Fluid Flow 29, 626–639 (2008)

    Article  Google Scholar 

  15. Hickel, S., Adams, N.A., Domaradzki, J.A.: An adaptive local deconvolution method for implicit LES. J. Comp. Phys. 213, 413–436 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hickel, S., Adams, N.A., Mansour, N.N.: Implicit subgrid-scale modeling for large-eddy simulation of passive-scalar mixing. Phys. Fluids 19, 095102 (2007)

    Article  Google Scholar 

  17. Hickel, S., Kempe, T., Adams, N.A.: Implicit large-eddy simulation applied to turbulent channel flow with periodic constrictions. Theoret. Comput. Fluid Dynamics 22, 227–242 (2008)

    Article  MATH  Google Scholar 

  18. Hickel, S., Weynans, L., Adams, N.A., Cottet, G.-H.: Towards implicit subgrid-scale modeling by particle methods. In: ESAIM: Proceedings, vol. 16, pp. 77–88 (2007)

    Google Scholar 

  19. Indinger, T.: Einfluss eines positiven Druckgradienten auf turbulente Grenzschichten an glatten und gerillten Oberflächen. PhD thesis, TU München (2005)

    Google Scholar 

  20. Lesieur, M.: Turbulence in Fluids, 3rd edn. Kluwer Academic Publishers, Dordrecht (1997)

    MATH  Google Scholar 

  21. Lilly, D.K.: On the application of the eddy viscosity concept in the inertial subrange of turbulence. National Center for Atmospheric Research, Boulder, Colorado. NCAR MS 123 (1966)

    Google Scholar 

  22. Lilly, D.K.: The representation of small-scale turbulence in numerical simulation experiments. In: Goldstein, H.H. (ed.) Proc. IBM Scientific Computing Symposium on Environmental Sciences, pp. 195–201. IBM (1967)

    Google Scholar 

  23. Lilly, D.K.: A proposed modification of the Germano subgrid-scale closure model. Phys. Fluids A 4, 633–635 (1992)

    Article  Google Scholar 

  24. Lund, T., Wu, X., Squires, K.: Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Comp. Phys. 140, 233–258 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  25. Mellen, C., Fröhlich, J., Rodi, W.: Large eddy simulation of the flow over periodic hills. In: Deville, M., Owens, R. (eds.) Proccedings of the 16th IMACS World Congress, Lausanne, Switzerland (2000)

    Google Scholar 

  26. Mittal, R., Iaccarino, G.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239–261 (2005)

    Article  MathSciNet  Google Scholar 

  27. Moser, R.D., Kim, J., Mansour, N.: Direct numerical simulation of turbulent channel flow up to \(\text{Re}_\tau=590\). Phys. Fluids 11, 943–945 (1999)

    Article  MATH  Google Scholar 

  28. Peller, N., Manhart, M.: Turbulent channel flow with periodic hill constrictions. In: Notes on Numerical Fluid Mechanics and Multidisciplinary Design. Springer, Heidelberg (2005)

    Google Scholar 

  29. Schumann, U.: Subgrid scale model for finite-difference simulations of turbulence in plane channels and annuli. J. Comp. Phys. 18, 376–404 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  30. Simpson, R.L.: A review of some phenomena in turbulent flow separation. J. Fluids Eng. 102, 520–533 (1981)

    Article  Google Scholar 

  31. Simpson, R.L.: Turbulent boundary-layer separation. Ann. Rev. Fluid Mech. 21, 205–234 (1989)

    Article  Google Scholar 

  32. Smagorinsky, J.: General circulation experiments with the primitive equations. Mon. Weath. Rev. 91, 99–164 (1963)

    Article  Google Scholar 

  33. Spalart, P.R.: Direct simulation of a turbulent boundary layer up to Re θ = 1410. J. Fluid Mech. 187, 61–98 (1988)

    Article  MATH  Google Scholar 

  34. Yeung, P., Zhou, Y.: On the universality of the Kolmogorov constant in numerical simulations of turbulence. Technical Report 97-64, ICASE, NASA Langley Research Center, Hampton, Virginia (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hickel, S., Devesa, A., Adams, N.A. (2009). Implicit Turbulence Modeling by Finite Volume Methods. In: Brun, C., Juvé, D., Manhart, M., Munz, CD. (eds) Numerical Simulation of Turbulent Flows and Noise Generation. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 104. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89956-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89956-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89955-6

  • Online ISBN: 978-3-540-89956-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics