Skip to main content

Robot Control in Dynamic Environments Using Memory-Based Learning

  • Chapter
Design and Control of Intelligent Robotic Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 177))

  • 1611 Accesses

Abstract

Learning systems used on robots typically require a-priori knowledge in the form of environmental models or trial-and-error approaches requiring a robot to physically execute multitudes of trial solutions. Neither approach is very suitable for dynamic unstructured environments in which a robot is sent to explore and gather information prior to human entry. This chapter presents a new approach, ‘memory-based learning’, in which a robot is provided with an initial baseline behavior whose performance is linked with a metric explicitly defined by a function whose arguments are sensory inputs and resulting robot actions. A neural network, using sensor inputs and action outputs, has been chosen as the basic controller building block for behaviors as it is very amendable to rapid in-situ generation and adaptation. The use of a neural network controller for a maneuvering task using electronic ‘ears’ for sensory input is demonstrated in this work, and genetic algorithms are shown to be an effective method for rapidly developing the network weights and transfer functions. The concept of memory based learning is introduced and a construct for representing coupled sense/action information is presented and demonstrated using both simple reactive and memory based controllers, whose performance is demonstrated through simulation studies and on land robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ActivMedia Robotics, Pioneer 2 Operations Manual, Version 1-1, Petersborough, NH (2002)

    Google Scholar 

  2. Angeline, P., Saunders, G., Pollack, J.: An Evolutionary Algorithm That Constructs Recurrent Neural Networks. IEEE Transactions on Neural Networks 5, 54–65 (1993)

    Article  Google Scholar 

  3. Balch, T., Arkin, R.: Behavior-Based Formation Control for Multirobot Teams. IEEE Trans. on Robotics and Automation 14, 926–939 (1998)

    Article  Google Scholar 

  4. Balch, T., Parker, L. (eds.): Robot Teams: From Diversity to Polymorphism. AK Peters. Wellesley (2002)

    Google Scholar 

  5. Bourgeois, B., Petry, F., Harris, M., Alleman, P.: A GIS Integration Approach for Dynamically Reconfigurable Surveys. Hydrographic Journal 91, 3–11 (1999)

    Google Scholar 

  6. Bradley, M.: Environmental Acoustics Handbook, 2nd edn. (1996)

    Google Scholar 

  7. Braitenberg, V.: Vehicles: Experiments in Synthetic Psychology. MIT Press, Boston (1986)

    Google Scholar 

  8. Buckles, B., Petry, F.: Genetic Algorithms: Introduction and Applications. IEEE Computer Society Press, Los Alamitos (1992)

    Google Scholar 

  9. Chance, T., Kleiner, A.: The Autonomous Underwater Vehicle (AUV): A Cost Effective Alternative to Deep-Towed Technology. Integrated Coastal Zone Management 8, 65–69 (2002)

    Google Scholar 

  10. Church, R., Warren, D.: New Technologies Rewrite History. Hydro International 6, 56–59 (2002)

    Google Scholar 

  11. Desai, J., Ostrowski, J., Kumar, V.: Modeling and Control of Formations of Nonholonomic Mobile Robots. IEEE Trans. on Robotics and Automation 17, 905–908 (2001)

    Article  Google Scholar 

  12. Fierro, R., Das, A., Kumar, V., Ostrowski, J.: Hybrid Control of Formations of Robots In: Proc. IEEE Int. Conf. on Robotics and Automation, Seoul, Korea, pp. 157–162 (2001)

    Google Scholar 

  13. Grefenstette, J., Schultz, A.: An evolutionary approach to learning in robots. In: Proc. Learning Workshop on Robot Learning, New Brunswick, NJ, pp. 47–56 (1994)

    Google Scholar 

  14. Holland, J.: Designing Autonomous Mobile Robots. Elsevier, Amsterdam (2004)

    Google Scholar 

  15. Jiang, N., Zhao, Z., Ren, L.: Design of Structural Modular Neural Networks Genetic Algorithm. Advances in Engineering Software 34, 17–24 (2003)

    Article  MATH  Google Scholar 

  16. McDowell, P., Chen, B., Bourgeois, B.: UUV Teams, Control From A Biological Perspective. In: Proceedings of the Oceans, MTS/IEEE Conference, Biloxi MS, pp. 331–337 (2002)

    Google Scholar 

  17. Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  18. Nehmzow, U.: Mobile Robots: A Practical Introduction, 2nd edn. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  19. NI LabVIEW Manual, National Instruments, Austin TX (2000)

    Google Scholar 

  20. Proakis, J., Sozer, E., Rice, J., Stojanovic, M.: Shallow Water Acoustic Networks. IEEE Communications Magazine 39, 114–119 (2001)

    Article  Google Scholar 

  21. Rucci, M., Wray, J., Edelman, G.: Robust localization of auditory and visual targets in a robotic barn owl. Robots and Autonomous Systems 30, 181–193 (2000)

    Article  Google Scholar 

  22. Sgorbissa, A., Arkin, R.: Local Navigation Strategies for a Team of Robots. Robotica 21, 461–473 (2003)

    Article  Google Scholar 

  23. Sofge, D., White, D.: Applied Learning: Optimal Control for Manufacturing. In: White, D., Sofge, D. (eds.) Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches, Van Nostrand Reinhold, pp. 272–273 (1992)

    Google Scholar 

  24. Stroupe, A., Balch, T.: Value-Based Action Selection for Observation with Robot Teams Using Probabilistic Techniques Journal of Robotics and Autonomous Systems 50, 85–97 (2005)

    Google Scholar 

  25. Touzet, C.: Distributed Lazy Q-Learning for Cooperative Mobile Robots. Int. Jour. Of Advanced Robotic Systems 1, 5–13 (2004)

    Google Scholar 

  26. Urick, R.: Principles of Underwater Sound, 3rd edn. McGraw-Hill, New York (1983)

    Google Scholar 

  27. Watkins, C., Dayan, P.: Q-Learning. Machine Learning 8, 279–292 (1992)

    MATH  Google Scholar 

  28. Yamaguchi, H., Arai, T.: Distributed and Autonomous Control Method for Generating Shape of Multiple Robot Group. In: Proceedings of IEEE Int. Conf. on Intelligent Robots and Systems, pp. 800–807 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McDowell, P.M., Bourgeois, B.S., Petry, F.E. (2009). Robot Control in Dynamic Environments Using Memory-Based Learning. In: Liu, D., Wang, L., Tan, K.C. (eds) Design and Control of Intelligent Robotic Systems. Studies in Computational Intelligence, vol 177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89933-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89933-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89932-7

  • Online ISBN: 978-3-540-89933-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics