Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 174))

Summary

Categories arise in mathematics and appear frequently in computer science where algebraic and logical notions have powerful representations using categorical constructions. In this chapter we lean towards the functorial view involving natural transformations and monads. Functors extendable to monads, further incorporating order structure related to the underlying functor, turn out to be very useful when presenting rough sets beyond relational structures in the usual sense. Relations can be generalized with rough set operators largely maintaining power and properties. In this chapter we set forward our required categorical tools and we show how rough sets and indeed a theory of rough monads can be developed. These rough monads reveal some canonic structures, and are further shown to be useful in real applications as well. Information within pharmacological treatment can be structured by rough set approaches. In particular, situations involving management of drug interactions and medical diagnosis can be described and formalized using rough monads.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading (1975)

    Google Scholar 

  2. Barr, M., Wells, C.: Toposes, Triples and Theories. Springer, Heidelberg (1985)

    MATH  Google Scholar 

  3. Cattaneo, G., Ciucci, D.: Shadowed sets and related algebraic structures. Fundamenta Iinformaticae 55, 255–284 (2003)

    MATH  MathSciNet  Google Scholar 

  4. Eilenberg, S., Moore, J.C.: Adjoint functors and triples. Illinois J. Math. 9, 381–398 (1965)

    MATH  MathSciNet  Google Scholar 

  5. Eklund, P., Gähler, W.: Partially ordered monads and powerset Kleene algebras. In: Proc. 10th Information Processing and Management of Uncertainty in Knowledge Based Systems Conference (IPMU 2004) (2004)

    Google Scholar 

  6. Eklund, P., Galán, M.A.: Monads can be rough. In: Greco, S., Hata, Y., Hirano, S., Inuiguchi, M., Miyamoto, S., Nguyen, H.S., Słowiński, R. (eds.) RSCTC 2006. LNCS, vol. 4259, pp. 77–84. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Eklund, P., Galán, M.A.: On logic with fuzzy and rough powerset monads. In: Kryszkiewicz, M., Peters, J.F., Rybinski, H., Skowron, A. (eds.) RSEISP 2007. LNCS, vol. 4585, pp. 391–399. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Eklund, P., Galán, M.A.: Partially ordered monads and rough sets. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets VIII. LNCS, vol. 5084, pp. 53–74. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Eklund, P., Galán, M.A., Gähler, W., Medina, J., Ojeda Aciego, M., Valverde, A.: A note on partially ordered generalized terms. In: Proc. of Fourth Conference of the European Society for Fuzzy Logic and Technology and Rencontres Francophones sur la Logique Floue et ses applications (Joint EUSFLAT-LFA 2005), pp. 793–796 (2005)

    Google Scholar 

  10. Eklund, P., Galán, M.A., Karlsson, J.: Rough Monadic Interpretations of Pharmacologic Information. In: Proceedings of the 15th International Workshops on Conceptual Structures, ICCS 2007, pp. 108–113. Sheffield, UK (2007)

    Google Scholar 

  11. Eklund, P., Galán, M.A., Medina, J., Ojeda Aciego, M., Valverde, A.: A categorical approach to unification of generalised terms. Electronic Notes in Theoretical Computer Science 66(5) (2002), http://www.elsevier.nl/locate/entcs/volume66.html

  12. Eklund, P., Galán, M.A., Medina, J., Ojeda Aciego, M., Valverde, A.: Set functors, L-fuzzy set categories and generalized terms. Computers and Mathematics with Applications 43, 693–705 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Eklund, P., Galán, M.A., Medina, J., Ojeda-Aciego, M., Valverde, A.: Composing submonads. In: Proc. 31st IEEE Int. Symposium on Multiple-Valued Logic (ISMVL 2001), Warsaw, Poland, May 22-24, pp. 367–372 (2001)

    Google Scholar 

  14. Eklund, P., Galán, M.A., Ojeda-Aciego, M., Valverde, A.: Set functors and generalised terms. In: Proc. 8th Information Processing and Management of Uncertainty in Knowledge-Based Systems Conference (IPMU 2000), pp. 1595–1599 (2000)

    Google Scholar 

  15. Eklund, P., Gähler, W.: Fuzzy Filter Functors and Convergence. In: Rodabaugh, S.E., Klement, E.P., Höhle, U. (eds.) Applications of category theory to fuzzy subsets. Theory and Decision Library B, pp. 109–136. Kluwer, Dordrecht (1992)

    Google Scholar 

  16. Eklund, P., Helgesson, R., Lindgren, H.: Towards refinement of clinical evidence using general logics. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS, vol. 5097, pp. 1029–1040. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Gähler, W.: Monads and convergence. In: Proc. Conference Generalized Functions, Convergences Structures, and Their Applications, Dubrovnik (Yugoslavia) 1987, pp. 29–46. Plenum Press (1988)

    Google Scholar 

  18. Gähler, W.: General Topology – The monadic case, examples, applications. Acta Math. Hungar. 88, 279–290 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gähler, W.: Extension structures and completions in topology and algebra, Seminarberichte aus dem Fachbereich Mathematik, Band 70, FernUniversität in Hagen (2001)

    Google Scholar 

  20. Gähler, W., Eklund, P.: Extension structures and compactifications, In: Categorical Methods in Algebra and Topology (CatMAT 2000), pp. 181–205 (2000)

    Google Scholar 

  21. Galán, M.A.: Categorical Unification, Dissertation, Umeå University (2004)

    Google Scholar 

  22. Goguen, J.A.: L-fuzzy sets. J. Math. Anal. Appl. 18, 145–174 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht (1998)

    MATH  Google Scholar 

  24. Järvinen, J.: On the structure of rough approximations. Fundamenta Informaticae 53, 135–153 (2002)

    MATH  MathSciNet  Google Scholar 

  25. Järvinen, J.: Lattice theory for rough sets. In: Peters, J.F., Skowron, A., Düntsch, I., Grzymała-Busse, J.W., Orłowska, E., Polkowski, L. (eds.) Transactions on Rough Sets VI. LNCS, vol. 4374, pp. 400–498. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  26. Karlsson, J.: Interface for accessing pharmacological information. In: Proc. 21st IEEE International Symposium on Computer-Based Medical Systems, Jyväskylä (Finland), June 17-19. IEEE CS Press, Los Alamitos (to appear, 2008)

    Google Scholar 

  27. Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shannon, C.E., McCarthy, J. (eds.) Automata Studies, pp. 3–41. Princeton University Press, Princeton (1956)

    Google Scholar 

  28. Kleisli, H.: Every standard construction is induced by a pair of adjoint functors. Proc. Amer. Math. Soc. 16, 544–546 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  29. Kortelainen, J.: A Topological Approach to Fuzzy Sets, Ph.D. Dissertation, Lappeenranta University of Technology, Acta Universitatis Lappeenrantaensis 90 (1999)

    Google Scholar 

  30. Kowalsky, H.-J.: Limesräume und Komplettierung. Math. Nachr. 12, 301–340 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  31. Lawvere, F.W.: Functorial semantics of algebraic theories, Dissertation, Columbia University (1963)

    Google Scholar 

  32. Manes, E.G.: Algebraic Theories. Springer, Heidelberg (1976)

    MATH  Google Scholar 

  33. Pawlak, Z.: Rough sets. Int. J. Computer and Information Sciences 5, 341–356 (1982)

    Article  MathSciNet  Google Scholar 

  34. Persson, M., Bohlin, J., Eklund, P.: Development and maintenance of guideline-based decision support for pharmacological treatment of hypertension. Comp. Meth. Progr. Biomed. 61, 209–219 (2000)

    Article  Google Scholar 

  35. Rydeheard, D., Burstall, R.: A categorical unification algorithm. In: Poigné, A., Pitt, D.H., Rydeheard, D.E., Abramsky, S. (eds.) Category Theory and Computer Programming. LNCS, vol. 240, pp. 493–505. Springer, Heidelberg (1986)

    Google Scholar 

  36. Salomaa, A.: Two complete axiom systems for the algebra of regular events. J. ACM 13, 158–169 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  37. Tarski, A.: On the calculus of relations. J. Symbolic Logic 6, 65–106 (1941)

    MathSciNet  Google Scholar 

  38. The sixth report of the joint national committee on prevention detection, evaluation, and treatment of high blood pressure, Technical Report 98-4080, National Institutes of Health (1997)

    Google Scholar 

  39. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eklund, P., Galán, M.A., Karlsson, J. (2009). Categorical Innovations for Rough Sets. In: Abraham, A., Falcón, R., Bello, R. (eds) Rough Set Theory: A True Landmark in Data Analysis. Studies in Computational Intelligence, vol 174. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89921-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89921-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89920-4

  • Online ISBN: 978-3-540-89921-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics