Advertisement

HyperSmooth: A System for Interactive Spatial Analysis Via Potential Maps

  • Christine Plumejeaud
  • Jean-Marc Vincent
  • Claude Grasland
  • Sandro Bimonte
  • Hélène Mathian
  • Serge Guelton
  • Joël Boulier
  • Jérôme Gensel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5373)

Abstract

This paper presents a new cartographic tool for spatial analysis of social data, using the potential smoothing method [10]. The purpose of this method is to view the spread of a phenomenon (demographic, economical, social, etc.) in a continuous way, at a macroscopic scale, from data sampled on administrative areas. We aim to offer an interactive tool, accessible through the Web, but ensuring the confidentiality of data. The biggest difficulty is induced by the high complexity of the calculus, dealing with a great amount of data. A distributed architecture is proposed: map computation is made on server-side, using particular optimization techniques, whereas map visualization and parameterisation of the analysis are done with a web-based client, the two parts communicating through a Web protocol.

Keywords

multiscalar spatial analysis potential maps interactive maps spatial decision support system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrienko, G., Andrienko, N., Gitis, V.: Interactive Maps for Visual Exploration of Grid and Vector Geodata ISPRS. Journal of Photogrammetry and Remote Sensing 57(5–6), 380–389 (2003)CrossRefGoogle Scholar
  2. 2.
    Bimonte, S., Wehrle, P., Tchounikine, A., Miquel, M.: GeWOlap: a Web Based Spatial OLAP Proposal. In: Second International Workshop on Semantic-based Geographical Information Systems, Montpellier, France, October 29-30. Springer, Heidelberg (2006)Google Scholar
  3. 3.
    Compieta, P., Di Martino, S., Bertolotto, M., Ferrucci, F., Kechadi, T.: Exploratory spatio-temporal data mining and visualization. Journal of Visual Languages and Computing 18(3) (2007)Google Scholar
  4. 4.
    Danjean, V., Gillard, R., Guelton, S., Roch, J.-L., Roche, T.: Adaptive Loops with Kaapi on Multicore and Grid: Applications in Symmetric Cryptography. In: Parallel Symbolic Computation (PASC 2007), London, Ontario. ACM publishing, New York (2007)Google Scholar
  5. 5.
    Dubois, A., Gensel, J., Hanell, T., Schürmann, C., Lambert, N., Zanin, C., Ysebaert, R., Grasland, C., Damsgaard, O., Lähteenmäki-Smith, K., Gloersen, E., Thomas, R.: Observing the structure of European territory in relative terms DG-IPOL, Regional Disparities and Cohesion: What Strategies for the future, EU Parliament, report IP/B/REGI/IC/2006_201 (2007)Google Scholar
  6. 6.
    Edsall, R., Andrienko, G., Andrienko, N., Buttenfield, B.: Interactive Maps for Exploring Spatial Data. In: Madden, M. (ed.) ASPRS Manual of GIS (2008)Google Scholar
  7. 7.
    Keenan, P.: Using a GIS as a DSS Generator. In: John, D., Jenny, D., Thomas, S., et al. (eds.) Perspectives on Decision Support System, pp. 33–40. University of the Aegean, Grèce (1996)Google Scholar
  8. 8.
    Kraak, M.-J., Brown, A. (eds.): Web Cartography. Taylor&Francis, London (2000)Google Scholar
  9. 9.
    Gotway, C., Young, L.: Combining Incompatible Spatial Data. Journal of the American Statistical Association 97(458), 632–648 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Grasland, C., Mathian, H., Vincent, J.-M.: Multiscalar Analysis and map generalisation of discrete social phenomena: Statistical problems and political consequences. Statistical Journal of the United Nations ECE 17, 1–32 (2000)Google Scholar
  11. 11.
    Josselin, D., Fabrikant, S.: Cartographie animée et interactive, Revue Internationale de Géomatique, Editions Hermès (2003)Google Scholar
  12. 12.
    Longley, P., Goodchild, M., Mahuire, D., Rhind, D.: Geographic Information Systems and Science, p. 517. John Wiley & Sons, New York (2001)Google Scholar
  13. 13.
    MacEachren, A., Kraak, M.-J.: Exploratory cartographic visualization: advancing the agenda. Computers & Geosciences 23(4), 335–343 (1997)CrossRefGoogle Scholar
  14. 14.
    Openshaw, S., Taylor, P.J.: A million or so correlation coefficients Statistical methods in the spatial sciences, Pion, London, pp. 127–144 (1979)Google Scholar
  15. 15.
    Roch, J.-L., Traore, D., Bernard, J.: Processor-oblivious parallel stream computations. In: 16th Euromicro International Conference on Parallel, Distributed and network-based Processing, Toulouse, France (2008)Google Scholar
  16. 16.
    Tobler, W.: Frame independant spatial analysis. In: Goodchild, M., Gopal, S. (eds.) The accuracy of spatial databases, NCGIA, ch. 11, pp. 115–119. Taylor & Francis, Abington (1991)Google Scholar
  17. 17.

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Christine Plumejeaud
    • 1
  • Jean-Marc Vincent
    • 1
  • Claude Grasland
    • 2
  • Sandro Bimonte
    • 1
  • Hélène Mathian
    • 2
  • Serge Guelton
    • 1
  • Joël Boulier
    • 2
  • Jérôme Gensel
    • 1
  1. 1.Laboratoire d’Informatique de GrenobleSaint-Martin d’HèresFrance
  2. 2.UMR Laboratoire Géographie-CitésParisFrance

Personalised recommendations