Advertisement

Efficient Vessel Tracking with Accuracy Guarantees

  • Martin Redoutey
  • Eric Scotti
  • Christian Jensen
  • Cyril Ray
  • Christophe Claramunt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5373)

Abstract

Safety and security are top concerns in maritime navigation, particularly as maritime traffic continues to grow and as crew sizes are reduced. The Automatic Identification System (AIS) plays a key role in regard to these concerns. This system, whose objective is in part to identify and locate vessels, transmits location-related information from vessels to ground stations that are part of a so-called Vessel Traffic Service (VTS), thus enabling these to track the movements of the vessels. This paper presents techniques that improve the existing AIS by offering better and guaranteed tracking accuracies at lower communication costs. The techniques employ movement predictions that are shared between vessels and the VTS. Empirical studies with a prototype implementation and real vessel data demonstrate that the techniques are capable of significantly improving the AIS.

Keywords

maritime navigation tracking trajectory prediction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Civilis, A., Jensen, C.S., Pakalnis, S.: Techniques for Efficient Road-Network-Based Tracking of Moving Objects. IEEE Transactions on Knowledge and Data Engineering 17(5), 698–712 (2005)CrossRefGoogle Scholar
  2. 2.
    International Maritime Organization, Guidelines for the onboard operational use of shipborne Automatic Identification Systems (AIS), resolution A.917(22), 14 pages (2002)Google Scholar
  3. 3.
    Bertrand, F., Bouju, A., Claramunt, C., Devogele, T., Ray, C.: Web architectures for monitoring and visualizing mobile objects in maritime contexts. In: Proceedings of the 7th International Symposium on Web and Wireless Geographical Information Systems, pp. 94–105 (2007)Google Scholar
  4. 4.
    Saltenis, S., Jensen, C.S., Leutenegger, S.T., Lopez, M.A.: Indexing the positions of continuously moving objects. In: Proceedings of ACM SIGMOD International Conference on Management of Data, pp. 331–342 (2000)Google Scholar
  5. 5.
    Kollios, G., Gunopulos, D., Tsotras, V.J.: On indexing mobile objects. In: Proceedings of the 18th ACM Symposium on Principles of Database Systems, pp. 261–272 (1999)Google Scholar
  6. 6.
    Sistla, A.P., Wolfson, O., Chamberlain, S., Dao, S.: Modeling and querying moving objects. In: Proceedings of the International Conference on Data Engineering, pp. 422–432 (1997)Google Scholar
  7. 7.
    Ding, Z., Güting, R.H.: Managing moving objects on dynamic transportation networks. In: Proceedings of the International Conference on Scientific and Statistical Databases, pp. 287–296 (2004)Google Scholar
  8. 8.
    Güting, R.H., Böhlen, M.H., Erwig, M., Jensen, C.S., Lorentzos, N.A., Schneider, M., Vazirgiannis, M.: A foundation for representing and quering moving objects. ACM Trans. Database Syst. 25(1), 1–42 (2000)CrossRefGoogle Scholar
  9. 9.
    Jensen, C.S., Lin, D., Ooi, B.C.: Query and update efficient B+-tree based indexing of moving objects. In: Proceedings of International conference on Very Large Data Bases, pp. 768–779 (2004)Google Scholar
  10. 10.
    Ashbrook, D., Starner, T.: Using GPS to learn significant locations and predict movement across multiple users. Personal and Ubiquitous Computing 7(5), 275–286 (2003)CrossRefGoogle Scholar
  11. 11.
    Liaoa, L., Patterson, D.J., Foxa, D., Kautz, H.: Learning and inferring transportation routines. Artificial Intelligence 171(5-6), 311–331 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Lazaridis, I., Kriengkrai, P., Mehrotra, S.: Dynamic Queries over Mobile Objects. In: Proceedings of the 8th International Conference on Extending Database Technology, pp. 269–286 (2002)Google Scholar
  13. 13.
    Bernstein, D., Kornhauser, A.: An Introduction to map matching for personal navigation assistants. New Jersey TIDE Center, 17 pages (1996)Google Scholar
  14. 14.
    Yin, H., Wolfson, O.: Weight-based map matching method in moving objects databases. In: Proceedings of the International Conference on Statistical and Scientific Database Management, pp. 437–438 (2004)Google Scholar
  15. 15.
    Taylor, G., Blewitt, G.: Intelligent positioning: GIS-GPS Unification. 181 pages. Wiley, Chichester (2006)CrossRefGoogle Scholar
  16. 16.
    Thériault, M., Claramunt, C., Seguin, A.-M., Villeneuve, P.: Temporal GIS and statistical modelling of personal lifelines. In: Ottawa, D.R., van Oosterom, P. (eds.) 9th Spatial Data Handling symposium, 9-12 July, pp. 433–450. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Redoutey, M., Scotty, E.: Tracking vessels with low cost and guaranteed high accuracy, Technical Report, Aalborg University and Naval Academy Research Institute, 52 pages (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Martin Redoutey
    • 1
  • Eric Scotti
    • 1
  • Christian Jensen
    • 2
  • Cyril Ray
    • 1
  • Christophe Claramunt
    • 1
  1. 1.Naval Academy Research InstituteBrest NavalFrance
  2. 2.Department of Computer ScienceAalborg UniversityDenmark

Personalised recommendations