Skip to main content

Modified Indiscernibility Relation in the Theory of Rough Sets with Real-Valued Attributes: Application to Recognition of Fraunhofer Diffraction Patterns

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((TRS,volume 5390))

Abstract

The goal of the paper is to present the modification of classical indiscernibility relation, dedicated for rough set theory in a real-valued attributes space. Contrary to some other known generalizations, indiscernibility relation modified here, remains an equivalence relation and it is obtained by introducing a structure into collection of attributes. It defines real-valued subspaces, used in a multidimensional cluster analysis, partitioning the universe in a more natural way, as compared to one-dimensional discretization, iterated in classical model. Since the classical model is a special, extreme case of our modification, the modified version can be considered as more general. But more importantly, it allows for natural processing of real-valued attributes in a rough-set theory, broadening the scope of applications of classical, as well as variable precision rough set model, since the latter can utilize the proposed modification, equally well. In a case study, we show a real application of modified relation, a hybrid, opto-electronic recognizer of Fraunhofer diffraction patterns. Modified rough sets are used in an evolutionary optimization of the optical feature extractor implemented as a holographic ring-wedge detector. The classification is performed by a probabilistic neural network, whose error, assessed in an unbiased way is compared to earlier works.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azuaje, F.: Genomic data sampling and its effect on classification performance assessment. BMC Bioinformatics 4(1), 5–16 (2003)

    Article  Google Scholar 

  2. Berfanger, D.M., George, N.: All-digital ring-wedge detector applied to fingerprint recognition. App. Opt. 38(2), 357–369 (1999)

    Article  Google Scholar 

  3. Berfanger, D.M., George, N.: All-digital ring wedge detector applied to image quality assessment. App. Opt. 39(23), 4080–4097 (2000)

    Article  Google Scholar 

  4. Casasent, D., Song, J.: A computer generated hologram for diffraction-pattern sampling. Proc. SPIE 523, 227–236 (1985)

    Article  Google Scholar 

  5. Cyran, K.A.: Integration of classifiers working in discrete and real valued feature space applied in two-way opto-electronic image recognition system. In: Proc. of IASTED Conference: Visualization, Imaging & Image Processing, Benidorn, Spain (accepted, 2005)

    Google Scholar 

  6. Cyran, K.A.: PLD-based rough classifier of Fraunhofer diffraction pattern. In: Proc. Int. Conf. Comp. Comm. Contr. Tech., Orlando, pp. 163–168 (2003)

    Google Scholar 

  7. Cyran, K.A., Jaroszewicz, L.R.: Concurrent signal processing in optimized hybrid CGH-ANN system. Opt. Appl. 31, 681–689 (2001)

    Google Scholar 

  8. Cyran, K.A., Jaroszewicz, L.R.: Rough set based classifiction of interferometric images. In: Jacquot, P., Fournier, J.M. (eds.) Interferometry in Speckle Light. Theory and Applictions, pp. 413–420. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  9. Cyran, K.A., Jaroszewicz, L.R., Niedziela, T.: Neural network based automatic diffraction pattern recognition. Opto-elect. Rev. 9, 301–307 (2001)

    Google Scholar 

  10. Cyran, K.A., Mrozek, A.: Rough sets in hybrid methods for pattern recognition. Int. J. Intell. Sys. 16, 149–168 (2001)

    Article  MATH  Google Scholar 

  11. Cyran, K.A., Niedziela, T., Jaroszewicz, L.R.: Grating-based DOVDs in high-speed semantic pattern recognition. Holography 12(2), 10–12 (2001)

    Google Scholar 

  12. Cyran, K.A., Niedziela, T., Jaroszewicz, J.R., Podeszwa, T.: Neural classifiers in diffraction image processing. In: Proc. Int. Conf. Comp. Vision Graph., Zakopane, Poland, pp. 223–228 (2002)

    Google Scholar 

  13. Cyran, K.A., Stanczyk, U.: Indiscernibility relation for continuous attributes: Application in image recognition. In: Kryszkiewicz, M., Peters, J.F., Rybinski, H., Skowron, A. (eds.) RSEISP 2007. LNCS, vol. 4585, pp. 726–735. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Cyran, K.A., Stanczyk, U., Jaroszewicz, L.R.: Subsurface stress monitoring system based on holographic ring-wedge detector and neural network. In: McNulty, G.J. (ed.) Quality, Reliability and Maintenance, pp. 65–68. Professional Engineering Publishing, Bury St Edmunds, London (2002)

    Google Scholar 

  15. Doherty, P., Szalas, A.: On the correspondence between approximations and similarity. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS, vol. 3066, pp. 143–152. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Fares, A., Bouzid, A., Hamdi, M.: Rotation invariance using diffraction pattern sampling in optical pattern recognition. J. of Microwaves and Optoelect. 2(2), 33–39 (2000)

    Google Scholar 

  17. Ganotra, D., Joseph, J., Singh, K.: Modified geometry of ring-wedge detector for sampling Fourier transform of fingerprints for classification using neural networks. Proc. SPIE 4829, 407–408 (2003)

    Article  Google Scholar 

  18. Ganotra, D., Joseph, J., Singh, K.: Neural network based face recognition by using diffraction pattern sampling with a digital ring-wedge detector. Opt. Comm. 202, 61–68 (2002)

    Article  Google Scholar 

  19. George, N., Wang, S.: Neural networks applied to diffraction-pattern sampling. Appl. Opt. 33, 3127–3134 (1994)

    Article  Google Scholar 

  20. Gomolinska, A.: A comparative study of some generalized rough approximations. Fundamenta Informaticae 51(1), 103–119 (2002)

    MathSciNet  MATH  Google Scholar 

  21. Grzymala-Busse, J.W.: Data with missing attribute values: Generalization of indiscernibility relation and rule induction. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 78–95. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  22. Grzymala-Busse, J.W.: Rough set strategies to data with missing attribute values. In: Proceedings of the Workshop on Foundations and New Directions in Data Mining, associated with the third IEEE International Conference on Data Mining, Melbourne, FL, USA, November 19– 22, 2003, pp. 56–63 (2003)

    Google Scholar 

  23. Jaroszewicz, L.R., Cyran, K.A., Podeszwa, T.: Optimized CGH-based pattern recognizer. Opt. Appl. 30, 317–333 (2000)

    Google Scholar 

  24. Jaroszewicz, L.R., Merta, I., Podeszwa, T., Cyran, K.A.: Airplane engine condition monitoring system based on artificial neural network. In: McNulty, G.J. (ed.) Quality, Reliability and Maintenance, pp. 179–182. Professional Engineering Publishing, Bury St Edmunds, London (2002)

    Google Scholar 

  25. Jarvinen, J.: Approximations and roughs sets based on tolerances. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 182–189. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  26. Kaye, P.H., Barton, J.E., Hirst, E., Clark, J.M.: Simultaneous light scattering and intrinsic fluorescence measurement for the classification of airbone particles. App. Opt. 39(21), 3738–3745 (2000)

    Article  Google Scholar 

  27. Kreis, T.: Holographic interferometry: Principles and methods. Akademie Verlag Series in Optical Metrology, vol. 1. Akademie-Verlag (1996)

    Google Scholar 

  28. Mait, J.N., Athale, R., van der Gracht, J.: Evolutionary paths in imaging and recent trends. Optics Express 11(18), 2093–2101 (2003)

    Article  Google Scholar 

  29. Mrozek, A.: A new method for discovering rules from examples in expert systems. Man-Machine Studies 36, 127–143 (1992)

    Article  Google Scholar 

  30. Mrozek, A.: Rough sets in computer implementation of rule-based control of industrial processes. In: Slowinski, R. (ed.) Intelligent decision support. Handbook of applications and advances of the rough sets, pp. 19–31. Kluwer Academic Publishers, Dordrecht (1992)

    Chapter  Google Scholar 

  31. Nebeker, B.M., Hirleman, E.D.: Light scattering by particles and defects on surfaces: semiconductor wafer inspector. Lecture Notes in Physics, vol. 534, pp. 237–257 (2000)

    Google Scholar 

  32. Pawlak, Z.: Rough sets: theoretical aspects of reasoning about data. Kluwer Academic, Dordrecht (1991)

    Book  MATH  Google Scholar 

  33. Piekara, A.H.: New aspects of optics – introduction to quantum electronics and in particular to nonlinear optics and optics of coherent light [in Polish]. PWN, Warsaw (1976)

    Google Scholar 

  34. Podeszwa, T., Jaroszewicz, L.R., Cyran, K.A.: Fiberscope based engine condition monitoring system. Proc. SPIE 5124, 299–303 (2003)

    Article  Google Scholar 

  35. Skowron, A., Grzymala-Busse, J.W.: From rough set theory to evidence theory. In: Yager, R.R., Ferdizzi, M., Kacprzyk, J. (eds.) Advances in Dempster Shafer theory of evidence, pp. 193–236. Wiley & Sons, NY (1994)

    Google Scholar 

  36. Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27, 245–253 (1996)

    MathSciNet  MATH  Google Scholar 

  37. Slowinski, R., Vanderpooten, D.: A generalized definition of rough approximations based on similarity. IEEE Transaction on Data and Knowledge Engineering 12(2), 331–336 (2000)

    Article  Google Scholar 

  38. Slowinski, R., Vanderpooten, D.: Similarity relation as a basis for rough approximations. In: Wang, P.P. (ed.) Advances in machine intelligence and soft computing, pp. 17–33. Bookwrights, Raleigh (1997)

    Google Scholar 

  39. Twomey, J.M., Smith, A.E.: Bias and variance of validation methods for function approximation neural networks under conditions of sparse data. IEEE Trans. Sys., Man, and Cyber. 28(3), 417–430 (1998)

    Article  Google Scholar 

  40. Ziarko, W.: Variable precision rough set model. J. Comp. Sys. Sci. 40, 39–59 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cyran, K.A. (2008). Modified Indiscernibility Relation in the Theory of Rough Sets with Real-Valued Attributes: Application to Recognition of Fraunhofer Diffraction Patterns. In: Peters, J.F., Skowron, A., Rybiński, H. (eds) Transactions on Rough Sets IX. Lecture Notes in Computer Science, vol 5390. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89876-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89876-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89875-7

  • Online ISBN: 978-3-540-89876-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics