Skip to main content

A Rough Set Based Approach for ECG Classification

  • Chapter
Transactions on Rough Sets IX

Part of the book series: Lecture Notes in Computer Science ((TRS,volume 5390))

Abstract

An inference engine for classification of Electrocardiogram (ECG) signals is developed with the help of a rule based rough set decision system. For this purpose an automated data extraction system from ECG strips is being developed by using a few image processing techniques. A knowledge base is developed after consulting different medical books as well as feedback of reputed cardiologists on interpretation and selection of essential time-plane features of ECG signal. An algorithm for extraction of different time domain features is also developed with the help of differentiation techniques and syntactic approaches. Finally, a rule-based rough set decision system is generated using these time-plane features for the development of an inference engine for disease classification. Two sets of rules are generated for this purpose. The first set is for general separation between normal and diseased subjects. The second set of rules is used for classifications between different diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abreu-Lima, C., de Sa, J.P.: Automatic classifiers for the interpretation of electrocardiograms. Rev. Port. Cardiol. 17(5), 415–428 (1998)

    Google Scholar 

  2. al-Fahoum, A.S., Howitt, I.: Combined wavelet transformation and radial basis neural networks for classifying life-threatening cardiac arrhythmias. Med. Biol. Eng. Comput. 37(5), 566–573 (1999)

    Article  Google Scholar 

  3. Al-Nashash: Cardiac Arrhythmia Classification using Neural Networks. Technology and Healthcare: Official Journal of the European Society for Engineering and Medicine 8(6), 363–372 (2000)

    Google Scholar 

  4. Goldberger, A.L.: Clinical Electrocardiography, A Simlified Approach, 6th edn., Harcourt India Pvt. Ltd.,

    Google Scholar 

  5. Bhullar, H.K., de Bono, D.P., Fothergill, J.C., Jones, N.B.: A computer based system for the study of QT intervals. In: Proceedings Computers in Cardiology, Venis, Italy, pp. 533–536 (1991)

    Google Scholar 

  6. Bortolan, G., Brohet, C., Fusaro, S.: Possibilities of using neural networks for ECG classification. J. Electrocardiol. 29, 10–16 (1996)

    Article  Google Scholar 

  7. Bosnjak, A., Bevilacqua, G., Passariello, G., Mora, F., Sanso, B., Carrault, G.: An Approach to Intelligent Ischemia Monitoring. Medical & Biomedical Engineering &Computing 33(6), 749–756 (1995)

    Article  Google Scholar 

  8. Bousseljot, R.D., Kreiseler, D.: ECG analysis by signal pattern comparison. Biomedical Engineering 43, 156–157 (1998)

    Google Scholar 

  9. Bozzola, P., et al.: Ahybrid neuro-fuzzy system for ECG classification of myocardial infarction. In: Comput. Cardiol., Indianapolis, IN (1996)

    Google Scholar 

  10. Cheng, F., Gao, R., Wei, Y.: Tracing algorithms of ECG tracks from scanned image. Journal of Biomed. Eng. 18, 306–308 (2001)

    Google Scholar 

  11. Cheng, Q.L., Lee, H.S., Thakor, N.V.: ECG waveform analysis by significant point extraction. II. Pattern matching. Comput. Biomed. Res. 20(5), 428–442 (1987)

    Article  Google Scholar 

  12. Coast, D.A., Stem, R.M., Cano, G.G., Briller, S.A.: An approach to cardiac arrhythmia analysis using hidden Markov models. IEEE Trans. Biomed. Eng.  BME-37, 826–836 (1990)

    Article  Google Scholar 

  13. Cromwell, L., Weibell, F., Pfeiffer, E.: Biomedical Instrumentation and Measurement, 2nd edn., pp. 384–386. Pearson Education, London (2007)

    Google Scholar 

  14. Degani, R.: Computerized Electrocardiogram Diagnosis: Fuzzy Approach. Methods of Inform. Med. 31, 225–233 (1992)

    Google Scholar 

  15. Dokur, Z., Olmez, T.: ECG beat classification by a novel hybrid neural network. Computer Methods and Programs in Biomedicine 66(2-3), 167–181 (2001)

    Article  Google Scholar 

  16. Einthoven, W., et al.: Amer. Heart J.  40, 163 (1950)

    Google Scholar 

  17. Frank, E.: Circ. Research.  3, 243 (1955)

    Google Scholar 

  18. Friensen, G.M., Jannett, T.C., Jadallah, M.A., Yates, S.L., Quint, S.R., Nagle, H.T.: A comparison of the noise sensitivity of nine QRS detection algorithms. IEEE Trans. Biomed. Eng. BME-37, 85–89 (1990)

    Article  Google Scholar 

  19. Kókai, G., Csirik, J., Gyimóthy, T.: Learning the syntax and semantic rules of an ECG grammar. In: Proceedings of fifth congress of the Italian Association for Artificial Intelligence, Roma (September 1997)

    Google Scholar 

  20. Kókai, G., Alexin, Z., Gyimóthy, T.: Learning Biomedical Patterns

    Google Scholar 

  21. Geddes, L.A., Baker, L.E.: Principles of applied biomedical instrumentation. John Wiley & Sons, Inc., NY (1968)

    Google Scholar 

  22. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn., pp. 491–495. Addison Wesley Longman, Inc., Amsterdam (2000)

    Google Scholar 

  23. Goswami, B., Mitra, T.K., Mitra, M., Nag, B., Basu, S.K., Basu, D.K.: Data Base Generation from ECG Records using AutoCAD Application Package. IETE technical review 11, 67–69 (1994)

    Article  Google Scholar 

  24. Goldman, M.J.: Principles of Electrocardiography, 11th edn. Marugen Asia (Pvt.) Ltd.

    Google Scholar 

  25. Ham, F.M., Han, S.: Classification of cardiac arrhythmias using fuzzy ARTMAP. IEEE Trans. Biomed. Eng. 43(4), 425–430 (1996)

    Article  Google Scholar 

  26. Hampton, J.R.: The ECG Made Easy, 5th edn. Churchill Livingstone

    Google Scholar 

  27. Hildebrand, F.B.: Introduction To Numerical Analysis, T M H (edn.), pp. 82–84. Tata Mcgraw-Hill Publishing Company Ltd., New York

    Google Scholar 

  28. Jager, F., Mark, R.G., Moody, G.B., Divjak, S.: Analysis of transient ST segment changes during ambulatory monitoring using the Karhunen-Loeve transform. Computers in Cardiology, 691–694 (1992)

    Google Scholar 

  29. Ji, Z., Qin, S., Peng, C.: Electrocardiographic signal feature extraction and its instrument development based on continuous wavelet transform. Journal of Biomed. Eng. 23(6), 1186–1190 (2006)

    Google Scholar 

  30. Kadamb, S., Murray, R., Boudreaux-Bartels, G.F.: Wavelet transform-based QRS complex detector. IEEE Trans. Biomed. Eng. 46, 838–848 (1999)

    Article  Google Scholar 

  31. King, M.J., HanK, J.S., Park, H., et al.: Classification of Arrhythmia based on discrete wavelet transform and roughset theory. In: Intl. Conf. Control, Automation and System, ICCAS (2001)

    Google Scholar 

  32. Koski, M., Juhola, M.: Meriste, Syntactic recognition of ECG signals by attributes finite Automata. Pattern Recognition 28(12) (1947-1940)

    Google Scholar 

  33. Kotsas, P., Pappas, C., Strintzis, M., Maglaveras, N.: Nonstationary ECG analysis using Wigner-Ville transform and wavelets. Computers in Cardiology, 499–502 (1993)

    Google Scholar 

  34. Lagerholm, M., Peterson, C.: Clustering ECG Complexes Using Hermite Functions and Self organizing Maps. IEEE Trans. Biomed. Eng. 47(7), 838–848 (2000)

    Article  Google Scholar 

  35. Laguna, P., Jane, R., Caminal, P.: Automatic detection of wave boundaries in multilead ECG signals: validation with the CSE database. Comput. Biomed. Res. 27, 45–60 (1994)

    Article  Google Scholar 

  36. Lee, H.S., Cheng, Q.L., Thakor, N.V.: ECG waveform analysis by significant point extraction in data reduction. Comput. Biomed. Res. 20(5), 410–427 (1987)

    Article  Google Scholar 

  37. Leung, J.M., Voskanian, A., Bellows, W.H., Pastor, D.: Automated electrocardiograph ST segment trending monitors: accuracy in detecting myocardial ischemia. Anesthesia and Analgesia 87(1), 4–10 (1998)

    Google Scholar 

  38. Li, C., Zheng, C., Tai, C.: Detection of ECG characteristic points using wavelet transforms. IEEE Trans. Biomed. Eng. 42(1), 21–28 (1995)

    Article  Google Scholar 

  39. Maglaveras, N., Stamkopoulos, T., Diamantaras, K., Pappas, C., Strintzis, M.: ECG pattern recognition and classification using non-linear transformations and neural networks: a review. International Journal of Medical Informatics 82, 191–208 (1998)

    Article  Google Scholar 

  40. Maglaveras, N., Stamkopoulos, T., Pappas, C., Strintzis, M.: An adaptive back-propagation neural network for real-time ischemia episodes detection. Development and performance analysis using the European ST-T database. IEEE Trans. Biomed. Eng. 45(7), 805–813 (1998)

    Article  Google Scholar 

  41. Mahmoodabadi, S., Ahmadian, A., Bolhasani, A.M., Eslami, M., Bidgoli, J.: ECG Feature Extraction Based on Multiresolution Wavelet Transform. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., vol. 4, pp. 3902–3905 (2005)

    Google Scholar 

  42. Matsuyama, A., Jonkman, M., de Boer, F.: Improved ECG signal analysis using wavelet and feature extraction. Methods Inf. Med. 46(2), 227–230 (2007)

    Google Scholar 

  43. Mitra, S., Mitra, M.: An Automated Data Extraction System From 12 Lead ECG Images. Computer Methods and Programs in Biomedicine 71(1), 33–38 (2003)

    Article  Google Scholar 

  44. Nugent, C.D., Webb, J.A., Black, N.D.: Feature and classifier fusion for 12-lead ECG classification. Med. Inform. Internet Med. 25(3), 225–235 (2000)

    Article  Google Scholar 

  45. φhrn, A.: Discernibility and Rough Sets in Medicine: Tools and Applications, Ph.D. Thesis, Department of Computer and Information Science, Norwegian University of Science and Technology, Trondheim, NTNU Report, 1999:133, IDI Report (1999)

    Google Scholar 

  46. Papaloukas, C., Fotiadis, D.I., Liavas, A.P., Likas, A., Michalis, L.K.: A knowledge-based technique for automated detection of ischaemic episodes in long duration electrocardiograms. Medical & Biological Engineering & Computing 39(1), 105–112 (2001)

    Article  Google Scholar 

  47. Pavlidis, T.: Structural Pattern Recognition, pp. 185–215. Springer, Heidelberg (1980)

    Google Scholar 

  48. Pawlak, Z.: Bayes’ Theorem Revised – The Rough Set View, New Frontiers in Artificial Intelligence: Joint. In: Terano, T., Nishida, T., Namatame, A., Tsumoto, S., Ohsawa, Y., Washio, T. (eds.) JSAI-WS 2001. LNCS, vol. 2253, pp. 240–250. Springer, Heidelberg (2001)

    Google Scholar 

  49. Pawlak, Z.: Rough sets. International Journal of Information and Computer Science 11(5), 341–356 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  50. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Series D: System Theory, Knowledge Engineering and Problem Solving, vol. 9. Kluwer Academic Publishers, Dordrecht (1991)

    Book  MATH  Google Scholar 

  51. Pawlak, Z.: The Rough Set View on Bayes’ Theorem, Advances in Soft Computing. In: Pal, N.R., Sugeno, M. (eds.) AFSS 2002. LNCS, vol. 2275, pp. 106–116. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  52. Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences 177(1), 3–27 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  53. Pawlak, Z., Skowron, A.: Rough sets: Some extensions. Information Sciences 177(1), 28–40 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  54. Pawlak, Z., Skowron, A.: Rough sets and boolean reasoning. Information Sciences 177(1), 41–73 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  55. Plonsey, R.: Bioelectric Phenomena (Book). Mcgraw-Hill Book company, NY (1969)

    Google Scholar 

  56. Polak, M.J., Zhou, S.H., Rautaharju, P.M., Armstrong, W.W., Chaitman, B.R.: Using automated analysis of the resting twealve-lead ECG to identify patients at risk of developing transient myocardial ischemia—an application of an adaptive logic network. Physiological Measurement 18(4), 317–325 (1997)

    Article  Google Scholar 

  57. Polkowski, L., Skowron, A.: Rough Sets in Knowledge Discovery. Physica – Verlag, Wurzburg (1998)

    Book  MATH  Google Scholar 

  58. Presedo, J., Vila, J., Barro, S., Palacios, F., Ruiz, R., Teddei, A., Emdin, M.: Fuzzy modeling of the expert’s knowledge in ECG-based ischemia detection. Fuzzy Sets and Systems 77(1), 63–75 (1996)

    Article  Google Scholar 

  59. Quinlan, J.R.: Induction of decision trees. MachineLearning 1, 81–106 (1986)

    Google Scholar 

  60. Quinlan, J.R.: C4.5 Programs for machine learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  61. Rey, W., Laird, J.D., Hugenholtz, P.G.: P-wave detection by digital computer. Comput. Biomed. Res. 4, 509–522 (1971)

    Article  Google Scholar 

  62. Scheler, A.M., et al.: Circ. Res.  VIII, 519–526 (1960)

    Google Scholar 

  63. Sekiguchi, K., Kanda, T., Osada, M., Tsunoda, Y., Kodajima, N., Fukumura, Y., Suzuki, T., Kobayashi, I.: Comparative accuracy of automated computer analysis versus physicans in training in the interpretation of electrocardiograms. Journal of Medicine 30(1-2), 75–81 (1999)

    Google Scholar 

  64. Silipo, R., Laguna, P., Marchesi, C., Mark, R.G.: ST-T segment change recognition using artificialneural networks and principal component analysis. Computers in Cardiology, 213–216 (1995)

    Google Scholar 

  65. Skordalakis, E.: Recognition of the shape of the STsegment in ECG waveforms. IEEE Trans. Biomed. Eng. 33, 972–974 (1986)

    Article  Google Scholar 

  66. Sternicke, K.: Automatic pattern recognition in ECG time series. Comput Methods Programs Biomed. 68(2), 109–115 (2002)

    Article  Google Scholar 

  67. Strintzis, M., Magnisalis, X., Stalidis, G., Maglaveras, N.: Use of neural networks for electrocardiogram (ECG) feature extraction recognition and classification. Neural Network World J. 3(4), 313–327 (1992)

    Google Scholar 

  68. Tezuka, A.: A study on transformation system of wave data recorded on paper into digital time data. Rec. Electr. Commun. Eng. Conversazione 57, 343–344 (1989)

    Google Scholar 

  69. Wideman, L.E., Freeman, G.L.: A to D conversion from paper records with a desktop scanner and a microcomputer. Comp. Biomed. Res. 22, 393 (1989)

    Article  Google Scholar 

  70. Wilson, F.N., et al.: Amer. Heart J.  9, 447 (1934)

    Google Scholar 

  71. Xiao, Y., Chen, H., Ge, J.: Automated Analysis Technology of Electrocardiogram. Journal of Biomedical Engineering 17(3), 339–342 (2000)

    Google Scholar 

  72. Xie, G., Nie, Z., Xiang, H., Zeng, Z.: Detection of P wave through wavelet transform and neural network. Journal of Biomed. Eng. 16(3), 320–323 (1999)

    Google Scholar 

  73. Item Xu, X., Liu, Y.: ECG QRS Complex Detection Using Slope Vector Waveform (SVW) Algorithm. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., vol. 5, pp. 3597–3600 (2004)

    Google Scholar 

  74. Yu, X., Xu, X.: QRS detection based on neural-network. Journal of Biomed. Eng. 17, 59–62 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mitra, S., Mitra, M., Chaudhuri, B.B. (2008). A Rough Set Based Approach for ECG Classification. In: Peters, J.F., Skowron, A., Rybiński, H. (eds) Transactions on Rough Sets IX. Lecture Notes in Computer Science, vol 5390. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89876-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89876-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89875-7

  • Online ISBN: 978-3-540-89876-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics