Skip to main content

Noncommutative Spaces

  • Chapter
  • First Online:
Noncommutative Spacetimes

Part of the book series: Lecture Notes in Physics ((LNP,volume 774))

In this chapter we present some of the basic concepts needed to describe noncommutative spaces and their topological and geometrical features. We therefore complement the previous chapters where noncommutative spaces have been described by the commutation relations of their coordinates. The full algebraic description of ordinary (commutative) spaces requires the completion of the algebra of coordinates into a \(C^\star\)-algebra, this encodes the Hausdorff topology of the space. The smooth manifold structure is next encoded in a subalgebra (of “smooth” functions). Relaxing the requirement of commutativity of the algebra opens the way to the definition of noncommutative spaces, which in some cases can be a deformation of an ordinary space. A powerful method to study these noncommutative algebras is to represent them as operators on a Hilbert space. We discuss the noncommutative space generated by two noncommuting variables with a constant commutator. This is the space of the noncommutative field theories described in this book, as well as the elementary phase space of quantum mechanics. The Weyl map from operators to functions is introduced in order to produce a \(\star\)-product description of this noncommutative space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Hilbert, Grundlagen der Geometrie, Teubner (1899), English translation The Foundations of Geometry, available at http://www.gutenberg.org

  2. J. Von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton University Press, Princeton (1955).

    MATH  Google Scholar 

  3. A. Connes, Noncommutative Geometry, Academic Press, San Diego (1994).

    MATH  Google Scholar 

  4. G. Landi, An Introduction to Noncommutative Spaces and Their Geometries, Springer Lect. Notes Phys. 51, Springer Verlag (Berlin Heidelberg) (1997), [hep-th/9701078].

    Google Scholar 

  5. J. M. Gracia-Bondia, J. C. Varilly and H. Figueroa, Elements of Noncommutative Geometry, Birkhäuser, Boston, MA (2000).

    Google Scholar 

  6. J. Madore, An introduction to noncommutative differential geometry and physical applications, Lond. Math. Soc. Lect. Note Ser. 257.

    Google Scholar 

  7. G. Landi, F. Lizzi and R. J. Szabo, Physical Applications of Noncommutative Geometry, Birkhäuser, Boston to appear.

    Google Scholar 

  8. G. Murphy, \(C^*\) -algebras and Operator Theory, Academic Press, San Diego (1990).

    MATH  Google Scholar 

  9. J. M. G. Fell and R. S. Doran, Representations of \(^*\) -Algebras, Locally Compact Groups and Banach \(^*\) -Algebraic Bundles, Academic Press, San Diego (1988).

    Google Scholar 

  10. A. Connes, On the spectral characterization of manifolds, arXiv:0810.2088.

    Google Scholar 

  11. J. Dixmier, Les \(C^*\) -algébres et leurs Représentations, Gauthier-Villars, Paris (1964).

    Google Scholar 

  12. M. A. Rieffel, Induced representation of \(C^*\) -algebras, Adv. Math. 13, 176 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  13. A. P. Balachandran, G. Bimonte, E. Ercolessi, G. Landi, F. Lizzi, G. Sparano and P. Teotonio-Sobrinho, Finite quantum physics and noncommutative geometry, Nucl. Phys. Proc. Suppl. 37C, 20 (1995), [hep-th/9403067].

    Article  ADS  Google Scholar 

  14. M. A Rieffel, \(C^{*}\) -algebras associated with irrational rotations, Pacific J. Math. 93, 415–429 (1981).

    MATH  MathSciNet  Google Scholar 

  15. H. Weyl, The theory of Groups and Quantum Mechanics, Dover, New York (1931), translation of Gruppentheorie und Quantemmechanik, Hirzel Verlag, Leipzig (1928).

    Google Scholar 

  16. E. P. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40, 749 (1932).

    Article  MATH  ADS  Google Scholar 

  17. J. C. Pool, Mathematical aspects of the Weyl correspondence, J. Math. Phys. 7, 66 (1996), [hep-th/0512169].

    Article  ADS  MathSciNet  Google Scholar 

  18. G. S. Agarwal and E. Wolf, Calculus for functions of noncommuting operators and general phase-space methods in quantum mechanics. I. Mapping theorems and ordering of functions of noncommuting operators, Phys. Rev. D 2, 2161 (1970).

    Article  ADS  MathSciNet  Google Scholar 

  19. J. M. Gracia-Bondia, Generalized moyal quantization on homogeneous symplectic spaces, Contemp. Math., 134, 93 (1992).

    MathSciNet  Google Scholar 

  20. H. Grönewold, On principles of quantum mechanics, Physica 12, 405 (1946).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. J. E. Moyal, Quantum mechanics as a statistical theory, Proc. Cambridge Phil. Soc. 45, 99 (1949).

    Article  MATH  MathSciNet  Google Scholar 

  22. J. M. Gracia-Bondia and J. C. Varilly, Algebras of distributions suitable for phase space quantum mechanics. (I), J. Math. Phys. 29, 869 (1988).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. J. C. Varilly and J. M. Gracia-Bondia, Algebras of distributions suitable for phase space quantum mechanics. II. Topologies on the moyal algebra, J. Math. Phys. 29, 880 (1988).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. R. Estrada, J. M. Gracia-Bondía and J. C. Várilly, On asymptotic expansions of twisted products, J. Math. Phys. 30, 2789 (1989).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. M. Gerstenhaber, On the deformation of rings and algebras, Ann. Math. 79, 59 (1964).

    Article  MathSciNet  Google Scholar 

  26. F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz and D. Sternheimer, Deformation theory and quantization. 1. Deformations of symplectic structures, Annals Phys. 111, 61 (1978).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz and D. Sternheimer, Deformation theory and quantization. 2. Physical applications, Annals Phys. 111, 111 (1978).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. M. Kontsevich, Deformation quantization of Poisson manifolds, I, Lett. Math. Phys. 66, 157 (2003), [q-alg/9709040].

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fedele Lizzi .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Lizzi, F. (2009). Noncommutative Spaces. In: Noncommutative Spacetimes. Lecture Notes in Physics, vol 774. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89793-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89793-4_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89792-7

  • Online ISBN: 978-3-540-89793-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics