Skip to main content

The Noncommutative Geometry of Julius Wess

  • Chapter
  • First Online:
Noncommutative Spacetimes

Part of the book series: Lecture Notes in Physics ((LNP,volume 774))

Julius Wess first work on noncommutative geometry dates June 1989. Since then he gradually became more and more interested and involved in this research field. We would like to describe briefly his interests, motivations, and main contributions, which could be divided into four periods. Therefore, we shall trace a short account of his last 18 years of scientific activity and hence of an approach to the subject that has become a reference point for the scientific community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. G. Drinfel’d, Hopf algebras and the quantum Yang-Baxter equation, Sov. Math. Dokl. 32, 254 (1985); V. G. Drinfel’d Dokl. Akad. Nauk Ser. Fiz. 283, 1060 (1985).

    Google Scholar 

  2. V. G. Drinfel’d, Quantum groups, In Proc. Int. Cong. Math. Berkeley, 798 (1986).

    Google Scholar 

  3. M. Jimbo, A q -difference analog of \(U(g)\) and the Yang-Baxter equation, Lett. Math. Phys. 10, 63 (1985).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. P. P. Kulish and N. Yu. Reshetikhin, Quantum linear problem for the sine-Gordon equation and higher representations, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 101, 101–110 (1981); english transl. in Jour. Sov. Math. 23, 2435–2441 (1983).

    Google Scholar 

  5. S. L. Woronowicz, Compact matrix pseudogroups, Commun. Math. Phys. 111, 613 (1987).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. L. Alvarez-Gaume, C. Gomez and G. Sierra, Quantum group interpretation of some conformal field theories, Phys. Lett. B 220, 142 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  7. N. Reshetikhin and V. G. Turaev, Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127, 1–26 (1990).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. N. Reshetikhin and V. G. Turaev, Invariants of three manifolds via link polynomials and quantum groups, Invent. Math. 103, 547–597 (1991).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. S. P. Vokos, J. Wess and B. Zumino, Properties of quantum \(2\times 2\) matrices, LAPP-TH-253/89, June (1989).

    Google Scholar 

  10. S. P. Vokos, B. Zumino and J. Wess, Analysis of the basic matrix representation of \(Gl_q(2,\mathbb{C})\), Z. Phys. C 48, 65 (1990).

    Article  MathSciNet  Google Scholar 

  11. A. Schirrmacher, J. Wess and B. Zumino, The two parameter deformation of \(GL(2)\), its differential calculus, and Lie algebra, Z. Phys. C 49, 317 (1991).

    Article  MathSciNet  Google Scholar 

  12. H. Ewen, O. Ogievetsky and J. Wess, Quantum matrices in two-dimensions, Lett. Math. Phys. 22, 297 (1991).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. I. Manin, Quantum groups and non-commutative geometry, Publ. Centre de Recherche Math., Montreal (1988).

    MATH  Google Scholar 

  14. J. Wess and B. Zumino, Covariant differential Calculus on the quantum Hyperplane, Nucl. Phys. Proc. Suppl. 18B, 302 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  15. S. L. Woronowicz, Twisted SU(2) group: an example of a noncommutative differential calculus, Publ. Res. Inst. Math. Sci. Kyoto 23, 117 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  16. W. Pusz, S. L. Woronowicz, Twisted second quantization, Rep. Path. Phys. 27, 231 (1990).

    Article  MathSciNet  Google Scholar 

  17. A. Connes, Non commutative differential geometry: Chapter I The Chern character in K cohomology, Preprint IHES octobre 1982; Chapter II: de Rham homology and commutative algebra, Preprint IHES février 1983, Publ. Math. IHES 62, 41–144 (1985).

    MATH  Google Scholar 

  18. W. B. Schmidke, J. Wess and B. Zumino, A q -deformed Lorentz algebra, Z. Phys. C 52, 471 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  19. O. Ogievetsky, W. B. Schmidke, J. Wess and B. Zumino, Six generator q-deformed Lorentz algebra, Lett. Math. Phys. 23, 233 (1991).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. O. Ogievetsky, W. B. Schmidke, J. Wess and B. Zumino, q-deformed Poincaré algebra, Commun. Math. Phys. 150, 495 (1992).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. J. Schwenk and J. Wess, A q -deformed Quantum Mechanical Toy Model, Phys. Lett. B 291, 273 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  22. A. Hebecker, S. Schreckenberg, J. Schwenk, W. Weich and J. Wess, Representations of a q-deformed Heisenberg Algebra, Z. Phys. C 64, 355 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  23. M. Fichtmuller, A. Lorek and J. Wess, q-deformed phase space and its lattice structure, Z. Phys. C 71, 533 (1996), [hep-th/9511106].

    ADS  MathSciNet  Google Scholar 

  24. J. Wess, Quantum groups and q-lattices in space, Nucl. Phys. Proc. Suppl. 49, 41 (1996).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. J. Wess, q-deformed phase space and its lattice structure, Int. J. Mod. Phys. A 12, 4997 (1997).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. A. Lorek and J. Wess, Dynamical symmetries in q -deformed quantum mechanics, Z. Phys. C 67, 671 (1995), [q-alg/9502007].

    Article  ADS  MathSciNet  Google Scholar 

  27. A. Lorek, A. Ruffing and J. Wess, A q-deformation of the harmonic oscillator, Z. Phys. C 74, 369 (1997), [hep-th/9605161].

    Article  MathSciNet  Google Scholar 

  28. M. Pillin, W. B. Schmidke and J. Wess, q-deformed relativistic one particle states, Nucl. Phys. B 403, 223 (1993).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. B. L. Cerchiai and J. Wess, q-Deformed Minkowski space based on a q-Lorentz algebra, Eur. Phys. J. C 5, 553 (1998), [math/9801104].

    ADS  MathSciNet  Google Scholar 

  30. B. L. Cerchiai, J. Madore, S. Schraml and J. Wess, Structure of the three-dimensional quantum Euclidean space, Eur. Phys. J. C 16, 169 (2000), [math/0004011].

    Article  ADS  MathSciNet  Google Scholar 

  31. G. Fiore, H. Steinacker and J. Wess, Decoupling braided tensor factors, Phys. Atom. Nucl. 64, 2116 (2001), [math/0012199].

    Article  ADS  MathSciNet  Google Scholar 

  32. G. Fiore, H. Steinacker and J. Wess, Unbraiding the braided tensor product, J. Math. Phys. 44, 1297 (2003), [math/0007174].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 9909, 032 (1999), [hep-th/9908142].

    Article  ADS  MathSciNet  Google Scholar 

  34. J. Madore, S. Schraml, P. Schupp and J. Wess, Gauge theory on noncommutative spaces, Eur. Phys. J. C 16, 161 (2000), [hep-th/0001203].

    Article  ADS  MathSciNet  Google Scholar 

  35. B. Jurčo, S. Schraml, P. Schupp and J. Wess, Enveloping algebra valued gauge transformations for non-Abelian gauge groups on non-commutative spaces, Eur. Phys. J. C17, 521 (2000), [hep-th/0006246].

    ADS  Google Scholar 

  36. B. Jurčo, L. Möller, S. Schraml, P. Schupp and J. Wess, Construction of non-Abelian gauge theories on noncommutative spaces, Eur. Phys. J. C21, 383 (2001), [hep-th/0104153 ].

    ADS  Google Scholar 

  37. B. Jurčo, P. Schupp and J. Wess, Noncommutative gauge theory for Poisson manifolds, Nucl. Phys. B 584, 784 (2000), [hep-th/0005005].

    Article  MATH  ADS  Google Scholar 

  38. B. Jurčo, P. Schupp and J. Wess, Nonabelian noncommutative gauge fields and Seiberg-Witten map, Mod. Phys. Lett. A 16, 343 (2001), [hep-th/0012225].

    Article  Google Scholar 

  39. B. Jurčo, P. Schupp and J. Wess, Nonabelian noncommutative gauge theory via noncommutative extra dimensions, Nucl. Phys. B 604, 148 (2001), [hep-th/0102129].

    Article  MATH  ADS  Google Scholar 

  40. M. Kontsevich, Deformation quantization of Poisson manifolds, I, Lett. Math. Phys. 66, 157–216 (2003), [q-alg/9709040].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  41. B. Jurčo, P. Schupp and J. Wess, Noncommutative line bundle and Morita equivalence, Lett. Math. Phys. 61, 171 (2002), [hep-th/0106110].

    Article  MATH  MathSciNet  Google Scholar 

  42. F. Brandt, C. P. Martin and F. Ruiz Ruiz, Anomaly freedom in Seiberg-Witten non-commutative gauge theories, JHEP 07, 068 (2003), [hep-th/0307292].

    Article  ADS  Google Scholar 

  43. X. Calmet, B. Jurčo, P. Schupp, J. Wess and M. Wohlgenannt, The standard model on noncommutative spacetime, Eur. Phys. J. C23, 363 (2002), [hep-ph/0111115].

    ADS  Google Scholar 

  44. P. Aschieri, B. Jurčo, P. Schupp and J. Wess, Noncommutative GUTs, standard model and C, P, T, Nucl. Phys. B 651, 45 (2003), [hep-th/0205214].

    Article  MATH  ADS  Google Scholar 

  45. A. Bichl, J. Grimstrup, H. Grosse, L. Popp, M. Schweda and R. Wulkenhaar, Renormalization of the noncommutative photon self-energy to all orders via Seiberg-Witten map, JHEP 0106, 013 (2001), [hep-th/0104097].

    Article  ADS  MathSciNet  Google Scholar 

  46. R. Wulkenhaar, Non-renormalizability of θ-expanded noncommutative QED, JHEP 0203, 024 (2002), [hep-th/0112248].

    Article  ADS  MathSciNet  Google Scholar 

  47. J. Grimstrup and R. Wulkenhaar, Quantisation of θ-expanded non-commutative QED, Eur. Phys. J. C 26, 139 (2002), [hep-th/0205153].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  48. M. Burić, D. Latas and V. Radovanović, Renormalizability of non-commutative \(SU(N)\) gauge theory, JHEP 0602, 046 (2006), [hep-th/0510133].

    ADS  Google Scholar 

  49. M. Burić, V. Radovanović and J. Trampetić, The one-loop renormalization of the gauge sector in the non-commutative standard model, JHEP 0703, 030 (2007), [hep-th/0609073].

    ADS  Google Scholar 

  50. W. Behr, N.G. Deshpande, G. Duplancić, P. Schupp, J. Trampetić, J. Wess, The \(Z^0 \to \gamma \gamma,\, gg\) Decays in the noncommutative standard model, Eur. Phys. J. C29, 441 (2003), [hep-ph/0202121].

    ADS  Google Scholar 

  51. P. Schupp, J. Trampetić, J. Wess and G. Raffelt, The photon neutrino interaction in non-commutative gauge field theory and astrophysical bounds, Eur. Phys. J. C 36, 405 (2004), [hep-ph/0212292].

    Article  ADS  Google Scholar 

  52. J. Lukierski, A. Nowicki, H.Ruegg and V.N. Tolstoy, Q-deformation of Poincaré algebra Phys. Lett. B264, 331 (1991).

    ADS  MathSciNet  Google Scholar 

  53. J. Lukierski, A. Nowicki and H. Ruegg, New quantum Poincaré algebra and κ-deformed field theory, Phys. Lett. B293, 344 (1992).

    ADS  MathSciNet  Google Scholar 

  54. S. Majid and H. Ruegg, Bicrossproduct structure of κ-Poincaré group and non-commutative geometry, Phys. Lett. B334, 348 (1994), [hep-th/9405107].

    ADS  MathSciNet  Google Scholar 

  55. M. Dimitrijević, L. Jonke, L. Möller, E. Tsouchnika, J. Wess and M. Wohlgenannt, Deformed field theories on κ-spacetime, Eur. Phys. J. C31, 129 (2003), [hep-th/0307149].

    ADS  Google Scholar 

  56. M. Dimitrijević, F. Meyer, L. Möller and J. Wess, Gauge theories on the κ-Minkowski spacetime, Eur. Phys. J. C36, 117 (2004), [hep-th/0310116].

    Article  ADS  Google Scholar 

  57. J. Wess, Deformed coordinate spaces; derivatives, in Proceedings of the BW2003 Workshop, Vrnjacka Banja, Serbia, 2003, [hep-th/0408080].

    Google Scholar 

  58. M. Chaichian, P. Kulish, K. Nishijima, and A. Tureanu, On a Lorentz-invariant interpretation of noncommutative space-time and its implications on noncommutative QFT, Phys. Lett. B604, 98 (2004), [hep-th/0408069].

    ADS  MathSciNet  Google Scholar 

  59. R. Oeckl, Untwisting noncommutative \(R^d\) and the equivalence of quantum field theories, Nucl. Phys. B 581, 559 (2000), [hep-th/0003018].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  60. P. Aschieri, C. Blohmann, M. Dimitrijević, F. Meyer, P. Schupp and J. Wess, A gravity theory on noncommutative spaces, Class. Quant. Grav. 22, 3511–3522 (2005), [hep-th/0504183].

    Article  MATH  ADS  Google Scholar 

  61. P. Aschieri, M. Dimitrijević, F. Meyer and J. Wess, Noncommutative geometry and gravity, Class. Quant. Grav. 23, 1883–1912 (2006), [hep-th/0510059].

    Article  MATH  ADS  Google Scholar 

  62. P. Aschieri, M. Dimitrijević, F. Meyer, S. Schraml and J. Wess, Twisted gauge theories, Lett. Math. Phys. 78, 61–71 (2006), [hep-th/0603024].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  63. M. Dimitrijević, V. Radovanović and J. Wess, Field theory on nonanticommutative superspace, JHEP 0712, 059 (2007), 0710.1746 [hep-th].

    Article  ADS  Google Scholar 

  64. G. Fiore and J. Wess, On full twisted Poincaré symmetry and QFT on Moyal-Weyl spaces, Phys. Rev. D 75, 105022 (2007), [hep-th/0701078].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Aschieri .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Aschieri, P. (2009). The Noncommutative Geometry of Julius Wess. In: Noncommutative Spacetimes. Lecture Notes in Physics, vol 774. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89793-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89793-4_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89792-7

  • Online ISBN: 978-3-540-89793-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics